Loading...

​​Identifying Some Morphological Features of Mutant Quinoa Plants (Chenopodium quinoa Willd.)

DOI: 10.18805/LRF-667    | Article Id: LRF-667 | Page : 815-821
Citation :- ​​Identifying Some Morphological Features of Mutant Quinoa Plants (Chenopodium quinoa Willd.).Legume Research.2022.(45):815-821
Ömer Eğritaş, Mustafa Tan, Kamil Haliloğlu teknsomer@hotmail.com
Address : Department of Fields Crops, Agriculture Faculty, Ataturk University, Erzurum-25100, Turkey.
Submitted Date : 15-11-2021
Accepted Date : 21-02-2022

Abstract

Background: This research was carried out to obtain seeds from M1 and M2 level mutant plants of Titicaca cultivar of quinoa and to make some distinctive morphological observations. 
Methods: Sodium azide was applied to the Titicaca variety of quinoa in 2018 and planted in a random order on plots in the field to obtain seeds at M1 level. When the plants reached the maturity of the seed harvest, they were removed from the soil and the number of growing days, plant height, stem thickness, number of branches, biological yield, seed yield and harvest index were measured and calculated at the M2 generation study. The seeds obtained from the M1 generation were planted in the field. In the period when the plants had 3 leaves, total herbicide with imazamox active ingredient was applied to the green parts of the plants. Afterwards, resistant plants were determined and M2 seeds were produced. Then, some measurements were made by growing M2 seeds in vases under greenhouse conditions. Results from mutant plants were compared with control plants. 
Result: According to the measurements made, M1 generation it was seen that the average number of branches was statistically less in mutant plants than in control plants. No statistically significant difference was found between the measurements obtained from control and mutant plants for other features. However, according to the measurements made in the M2 generation, the difference between the values of the control and mutant plants was found to be statistically significant.

Keywords

Chenopodium quinoa Herbicide resistance Mutation Morphological features

References

  1. Ahmed, B.H., Haredy, M.H., Khlifa, Y.A.M. (2020). Effect of chemical mutagens on some morphological and yield components traits of wheat (Triticum aestivum L.). Egyptian Journey Agronomy. 42(2). 
  2. Ali, S., Honermeier, B. (2016). Post emergence herbicides influence the leaf yield, chlorophyll fluorescence and phenolic compounds of artichoke (Cynara cardunculus L.). Scientia Horticulturae. 203: 216-223.
  3. Adamu, A.K., Aliyu, H. (2007). Morphogical effects of sodium azide on tomato (Lycopersicon esculentum Mill). Science World Journal. 2(4).
  4. Akhtar, N. (2014). Effect of physical and chemical mutagens on morphological behavior of tomato (Solanum lycopersicum) Cv. “Rio grande” under heat stress conditions. Plant Breeding and Seed Science. 70.
  5. Akhtar, N., Ali, S., Ahmed, S., Shah, S.S. (2017). Mutagenic effect of sodium azide (NaN3) on M2 generation of Brassica napus L. (variety Dunkled). Pure and Applied Biology. 6(1): 226-236.
  6. Aguilar, P., Jacobsen, C. (2003). Cultivation of quinoa on the peruvian altiplano. Food Reviews International. 19: 31-41.
  7. Abdulkareem, K.A., Garuba, T,  Akande, E.O., Mustapha, O.T. (2017). Effect of sodium azide on morphological characters of three tomato accessions (Solanum lycopersicon L). Romanian Journal of Biology - Plant Biology. 62(2): 109-117.
  8. Barshile, J. (2016). Chemical mutagenesis induced small leaf mutant in chickpea (Cicer arietinum L.). International Journal of Researches in Biosciences and Agriculture Technology, 2016/01/01.
  9. Basu, S.K., Acharya, S.N., Thomas, J, E., (2008). Genetic improvement of fenugreek (Trigonella foenum-graecum L.) through EMS induced mutation breeding for higher seed yield under western Canada prairie conditions. Euphytica. 160: 249-258.
  10. Bhargava, A., Shukla, S., Ohri, D. (2007). Genetic variability and interrelationship among various morphological and quality traits in quinoa (Chenopodium quinoa Willd.). Field Crops Research, 101: 104-116. 
  11. Comai, S., A, Bertazzo, Bailoni, L., Zancato, M., Costa, C.V.L., Allegri, G. (2007). The content of proteic and nonproteic (free and protein bound) tryptophan in quinoa and cereal flours. Food Chemistry. 100: 1350-1355.
  12. Chen, B., Liu, X., Zhou, Y., He, M. (2020). Effect of ethyl methanesulfonate on induced morphological variation in m3 generation of Chrysanthemum indicum var. Aromaticum. Hortscience. 55(7): 1099-1104. 
  13. Das, S., Mondal, T. (2014). Mode of action of herbicides and recent trends in development: A reappraisal. International Journal of Agricultural and Soil Science. 2: 27-32.
  14. Devi, R.T., Singh, N.B. (2006). Mutagenic induction of variability and selection in M2 generatýon of selected ricebean [Vigna umbellata (thunb.) ohwý and ohashi] cultivars of Manipur. Legume Research- An International Journal. 29(2): 150-153.
  15. Dewi, K., Meidiana, G., Sudjino, Suharyanto. (2016). Effects of sodium azide (NaN3) and cytokininon vegetative growth and yield of black rice plant (Oryza sativa L. ‘Cempo Ireng’). AIP Conference Proceedings. 1755(1). 
  16. Díaz, J., Seguel, I., Morales, A. (2015). Quínoa: Oportunidad y desafío para la agricultura familiar campesina en Chile. Revista Tierra Adentro. Especial Quínoa N°108. p. 62-67.
  17. Dinkar, V., Arora, A., Panwar, R.K., Verma, S,K., Rohi, (2020). Mutagenesis induced variability through gamma rays, EMS and combinatio treatments in chickpea genotypes. Journal of Pharmacognosy and Phytochemistry. 9(2): 1139-1144.
  18. Efe, B., Ünal, S. (2017). Farklı Ggama ışını dozlarının mMacar fiği çeşitlerindeki bazı kantitatif özelliklere etkisi. KSÜ Doğa Bilimleri Dergisi. 20: 135-143.
  19. Egritas, O., Tan, M., Haliloglu, K. (2021). Herbisite dayanikli mutant kinoa (Chenopodium quinoa Willd.) hatlarinda bazi bitkisel özelliklerin belirlenmesi. Journal of the Institute of Science and Technology. 10(2): 1382-1388.
  20. El-Nashar, Y,L. (2012). Effect of chemical mutagens on vegetative growth and flowering in Calendula officinalis L. (Cv. Calypso Yellow. Alexandria Science Exchange Journal. 33(2).
  21. Emrani, S.N., Arzani, A., Saeidi, G. (2011). Seed viability, germination and seedling growth of canola (Brassica napus L.) as influenced by chemical mutagens. African Journal of Biotechnology. 10(59):12602-12613
  22. Geren, H. (2015). Effects of different nitrogen levels on the grain yield and some yield components of quinoa (Chenopodium quinoa Willd.) under mediterranean climatic conditions. Turkish Journal of Field Crops. 20(1): 59-64.
  23. Ghormade, G.N., Yadlod, S.S., Abhangrao, A.K., Adsure, D.D. (2020). Effect of chemical mutagens on growth and flowering of chrysanthemum varieties in VM1 generation. International Journal of Chemical Studies. 8(4): 1576-1579.
  24. Ibukun, E.O., Oluwaseyi, A.E. (2019). Effect of sodium azide on agro-morphological traits of four varieties of Kenaf (Hibiscus cannabinus). GSC Biological and Pharmaceutical Sciences. 08(03): 010-016.
  25. Jacobsen, S.E. (2003). The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food Reviews International. 19(1-2): 167-177.
  26. Khan, S., Wani, R.F., Parveen, K. (2006). Quantitative variability in mungbean induced by chemical mutagens. Legume Research- An International Journal. 29(2): 143-145.
  27. Khursheed, S., Khan, S. (2014). Mutagenic effects of methyl methanesulphonate on the growth and yield characteristics in lentil (Lens culinaris Medik.) var. DPL-15. Scholars Academic Journal of Biosciences (SAJB). 2(12B): 943-947.   
  28. Laskar, A.R., Khan, S. (2014). Enhancement of genetic variability through chemical mutagenesis in broad bean. Agrotechnol. 2: 4.
  29. Muthusamy, A., Jayabalan, N. (2011). In vitro induction of mutation in cotton (Gossypium hirsutum L.) and isolation of mutants with improved yield and fiber characters. Acta Physiologiae Plantarum. 33: 1793-1801.
  30. Newhouse, K.E., Smith, W.A., Starrett, M.A., Schaefer, T.J., Singh, B.K. (1992). Tolerance to imidazolinone herbicides in wheat. Plant Physiology. 100: 882-886.
  31. Nizamani, M.M., Rafiq, M., Noor-ul-Ain, N., Ahmed Naqvi, S., Kaleri, A.H., Gul, J. (2020). Effect of chemical mutagens on growth of Okra [Abelmoschus esculentus (L.) Moench]. Pure and Applied Biology. 9(1): 1110-1117.
  32. Pearsall, D.M. (1992). The Origins of Plant Cultivation in South America. In: The Origins of Agriculture. [C.W. Cowan, P.J.Watson (Eds.)], Smithsonian Institute Press, Washington, DC, pp:173-205.
  33. Rana, K.G., Singh, N.K., Deshmukh, K.K., Mishra, S.P. (2019). Quinoa: New light on an old superfood: A review. Agricultural Reviews. 40(4): 319-323.
  34. Roychowdhury R., Alam, MJF., Bishnu, S., Dalal, T., Tah, J. (2012). Comparative study the effects of chemical mutagenesis on seed germination, surviviability and pollen sterility in M1 and M2 generation of Dianthus. Plant Breding and Seed Science. 65: 29-38. 
  35. Rysbekova, A., Dyussibayeva, E., Seitkhozhayev, A., Zhirnova, I., Zhakenova, A., Yessenbekova, G., Bekenova, S., Yussayeva., D. (2020). Influence of sodium azide on morphological traits of Proso Millet (Panicum miliaceum L.) genotypes. Ecology, Environment and Conservation Journal Papers. 26 (August Suppl. Issue): S18-S23. 
  36. Srivastava, P., Marker, S., Pandey, P., Tiwari, D.K. (2011). Mutagenic effects of sodium azide on the growth and yield characteristics in wheat [Triticum aestivum (L.) em. Thell.]. Asian Journal of Plant Sciences. 10: 190-201.
  37. Sakün, M.A., Yıldırım, A., Gökmen, S. (2005). Determining some yield and quality characteristics of mutants induced from a durum wheat (Triticum durum Desf.) cultivar. Turk Journal Agric For. 29: 61-67.
  38. Singh, P.K., Avinalappa, H.H., Chaterjee, C. (2015). Induced flower colour mutations in chickpea (Cicer arietinum L.). Indian Juornal of Ecology. 42(2): 517-519. 
  39. Sheeba, A., Abumalarmalhi, J., Babu, S., Ibrahim, S. (2005). Mutagenic effects of gamma rays and EMS in M1 generation in sesame. Resources on Crops. 6(2): 300-306.
  40. Sheikh  S.A., Wani M.R., Lone  M.A., Tak, M.A., Malla, N.A. (2012). Sodium azide induced biological damage and variability for quantitative traits and protein content in wheat (Triticum aestivum  L.). Journal  of  Plant  Genomics. 2(1): 34-38.   
  41. Talebi, A.B.,  Talebi, A.B.,  Shahrokhifar, B.B. (2012). Ethyl methane sulphonate (EMS) induced mutagenesis in Malaysian rice (cv. MR219) for lethal dose determination. American Journal of Plant Sciences. 3: 1661-1665.
  42. Tan, M., Temel, S. (2017). Determination of dry matter yield and some properties of different Quinoa genotypes in Erzurum and Iğdır conditions. Journey of the Institute of Science and Tecnology. 7(4): 257-263.
  43. Tan, M., Temel, S. (2018a). Studies on the adaptation of quinoa (Chenopodium quinoa Willd.) to eastern Anatolia region of Turkey. AGROFOR International Journal. 2(2):
  44. Tan, M., Yöndem, Z. (2013). İnsan ve hayvan beslenmesinde yeni bir bitki: Kinoa (Chenopodium quinoa Willd.). Alýnteri. 25: 62-66.
  45. Tan, M., Temel, S. (2018b). Performace of some quinoa (Chenopodium quinoa Willd.) genotypes grown in different climate conditions. Turkish Journal Field Crops. 23(2): 180-186. 
  46. Thiam, E., Allaoui, A., Benlhabib, Q. (2021). Quinoa productivity and stability evaluation through varietal and environmental interaction. Plants. 10: 714.
  47. Ul Allah, S., Iqbal, M., Naeem, M., Ijaz, M. (2019). Creation of new genetic diversity in cotton germplasm through chemically induced mutation. Internatýonal Journal of Agriculture and Biology. 22: 51-56.
  48. Wani, R M. (2021). Comparative biological sensitivity and mutability of chemomutagens in lentil (Lens culinaris Medik). Legume Research- An International Journal. 44(1): 26-30.

Global Footprints