Legume Research

  • Chief EditorJ. S. Sandhu

  • Print ISSN 0250-5371

  • Online ISSN 0976-0571

  • NAAS Rating 6.67

  • SJR .391

  • Impact Factor .669 (2022)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Legume Research, volume 45 issue 1 (january 2022) : 1-9

The Role of Arbuscular Mycorrhiza Fungi in Drought Tolerance in Legume Crops: A Review

Yannan Hu, Arun K. Pandey, Xinyang Wu, Pingping Fang, Pei Xu
1College of Life Sciences, China Jiliang University, Hangzhou 310018, China.
  • Submitted12-10-2021|

  • Accepted04-12-2021|

  • First Online 01-01-2022|

  • doi 10.18805/LRF-660

Cite article:- Hu Yannan, Pandey K. Arun, Wu Xinyang, Fang Pingping, Xu Pei (2022). The Role of Arbuscular Mycorrhiza Fungi in Drought Tolerance in Legume Crops: A Review. Legume Research. 45(1): 1-9. doi: 10.18805/LRF-660.

Legumes are low-cost but high-yielding crops, which are rich in dietary proteins, vitamins and minerals. Known as mycorrhizal plants, legumes are widely used as model organisms to explore the plant-microbe interactions, especially the symbiotic relationship between plants and rhizosphere microorganisms. Arbuscular mycorrhizal fungi (AMF), an important class of plant-associated microbes, can regulate many physiological and molecular responses of plants. To date, AMF has been commonly used as a bio-fertilizer, whose inoculation to host plants can confer tolerance to different abiotic stresses such as drought, salinity, heat and heavy metals. This review provides an overview of the responses of legumes to drought stress (DS), a summary of the mechanism of AMF-legume symbiosis and its effect on host plant drought tolerance, which taken together reveals the significance of this symbiosis in agriculture. The presented rich information will help understand how host plants benefit from AMF to increase drought tolerance while finetuning their metabolic pathways. The potential and importance of AMF as one of the most effective and environmental-friendly management approaches for enhancing legume crop productivity against DS is highlighted.

  1. Adriana Marulanda, R.A., Ruiz-Lozano, J.M. (2003). Contribution of six arbuscular mycorrhizal fungal isolates to water uptake by Lactuca sativa plants under drought stress. Physiologia Plantarum. 119(4): 526-533.

  2. Agurla, S., Gahir, S., Munemasa, S., Murata, Y. and Raghavendra, A.S. (2018). Mechanism of stomatal closure in plants exposed to drought and cold stress. Advances in Experimental Medicine and Biology. 1081: 215-232.

  3. Al-Ghzawi, A.A.M., Zaitoun, S., Gosheh, H. and Alqudah, A. (2009). Impacts of drought on pollination of Trigonella moabitica (Fabaceae) via bee visitations. Archives of Agronomy and Soil Science. 55(6): 683-692.

  4. Almeida, J., Hartwig, U., Frehner, M., Nösberger, J. and Lüscher, A. (2000). Evidence that P deficiency induces N feedback regulation of symbiotic N2 fixation in white clover (Trifolium repens L.). Journal of Experimental Botany. 51: 1289-1297.

  5. Aroca, R., Porcel, R. and Ruiz-Lozano, J.M. (2007). How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? The New Phytologist. 173(4): 808-816.

  6. Ashwin, R., Bagyaraj, D.J. and Mohan Raju, B. (2019). Symbiotic response of drought tolerant soybean varieties, DSR 2 and DSR 12 to different Arbuscular mycorrhizal fungi. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences. 89(2): 649-655.

  7. Augé, R.M. (2001). Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza. 11(1): 3-42.

  8. Baird, L. and Caruso, K. (1994). Development of root nodules in phaseolus vulgaris inoculated with rhizobium and mycorrhizal fungi. International Journal of Plant Sciences. 155(6). https://doi.org/10.1086/297203.

  9. Barzana, G., Aroca, R. and Ruiz-Lozano, J.M. (2015). Localized and non-localized effects of arbuscular mycorrhizal symbiosis on accumulation of osmolytes and aquaporins and on antioxidant systems in maize plants subjected to total or partial root drying. Plant Cell and Environment. 38(8): 1613-1627. 

  10. Bellaloui, N., Mengistu, A. and Kassem, M.A. (2013). Effects of genetics and environment on fatty acid stability in soybean seed. Food and Nutrition Sciences. 4(9): 165-175.

  11. Bever, J.D., Schultz, P.A., Pringle, A. and Morton, J.B. (2001). Arbuscular Mycorrhizal Fungi: More diverse than meets the eye and the ecological tale of why. BioScience. 51(11): 923-931.

  12. Bolandnazar, S., Aliasgarzad, N., Neishabury, M.R. and Chaparzadeh, N. (2007). Mycorrhizal colonization improves onion (Allium cepa L.) yield and water use efficiency under water deficit condition. Scientia Horticulturae. 114(1): 11-15.

  13. Bonfante, P. and Genre, A. (2010). Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nature Communications. 1: 48.

  14. Burrows, R. (2014). Glomalin production and infectivity of arbuscular-mycorrhizal fungi in response to grassland plant diversity. American Journal of Plant Sciences. 5(1): 103-111.

  15. De la Providencia, I.E., de Souza, F.A., Fernandez, F., Delmas, N.S. and Declerck, S. (2005). Arbuscular mycorrhizal fungi reveal distinct patterns of anastomosis formation and hyphal healing mechanisms between different phylogenic groups. New Phytol. 165(1): 261-271.

  16. Deepa Jaganathan, M.T., Kale, S., Azam, S., Roorkiwal, M., Gaur, P.M., Kavi Kishor, P.B., Nguyen, H., Sutton T. and Varshney, R.K. (2015). Genotyping-by-sequencing based intra-specific genetic map refines a ‘‘QTL-hotspot” region for drought tolerance in chickpea. Molecular Genetics and Genomics. 290: 559-571.

  17. Delmer, D.P. (2005). Agriculture in the developing world Connecting innovations in plant research to downstream applications. Biotechnology and Developing World. 102(44): 15739- 15746.

  18. Demirevska, K., Zasheva, D., Dimitrov, R., Simova-Stoilova, L., Stamenova, M. et al. (2009). Drought stress effects on Rubisco in wheat: Changes in the Rubisco large subunit. Acta Physiologiae Plantarum. 31(6): 1129-1138.

  19. De Varennes, A. and Goss, M.J. (2007). The tripartite symbiosis between legumes, rhizobia and indigenous mycorrhizal fungi is more efficient in undisturbed soil. Soil Biology and Biochemistry. 39(10): 2603-2607.

  20. Dickson, S., Smith, F.A. and Smith, S.E. (2007). Structural differences in arbuscular mycorrhizal symbioses: more than 100 years after Gallaud, where next? Mycorrhiza. 17(5): 375-393.

  21. Duan, T., Facelli, E., Smith, S.E., Smith, F.A. and Nan, Z. (2011). Differential effects of soil disturbance and plant residue retention on function of arbuscular mycorrhizal (AM) symbiosis are not reflected in colonization of roots or hyphal development in soil. Soil Biology and Biochemistry. 43(3): 571-578.

  22. Eom, A.H., Hartnett, D., Wilson, G. and Figge, D. (2009). The effect of fire, mowing and fertilizer amendment on arbuscular mycorrhizas in tallgrass prairie. The American Midland Naturalist. 142: 55-70.

  23. Eremina, M., Rozhon, W. and Poppenberger, B. (2016). Hormonal control of cold stress responses in plants. Cellular and Molecular Life Science. 73(4): 797-810.

  24. Fang, X., Turner, N.C., Yan, G., Li, F. and Siddique, K. H. (2010). Flower numbers, pod production, pollen viability and pistil function are reduced and flower and pod abortion increased in chickpea (Cicer arietinum L.) under terminal drought. Journal of Experimental Botany. 61(2): 335-345.

  25. Farahani, A.S., Lebaschi, H., Hussein, M.A.A., Hussein., S.A., Reza, V.A., et al. (2013). Effects of arbuscular mycorrhizal fungi, different levels of phosphorus and drought stress on water use efficiency, relative water content and proline accumulation rate of coriander (Coriandrum sativum L.). Journal of Medicinal Plants Research. 2: 125-131.

  26. Farooq, M., Hussain, M. and Siddique, K.H.M. (2014). Drought stress in wheat during flowering and grain-filling periods. Critical Reviews in Plant Sciences. 33(4): 331-349.

  27. Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. and Basra, S.M.A. (2009). Plant drought stress: Effects, mechanisms and management. Agronomy for Sustainable Development. 29(1): 185-212.

  28. Fotiadis, D., Jenö, P., Mini, T., Wirtz, S., Müller, S.A., et al. (2001). Structural characterization of two aquaporins isolated from native spinach leaf plasma membranes. Journal of Biological Chemistry. 276(3): 1707-1714.

  29. Gai, J.P., Christie, P., Feng, G. and Li, X.L. (2006). Twenty years of research on community composition and species distribution of arbuscular mycorrhizal fungi in China: A review. Mycorrhiza. 16(4): 229-239.

  30. Gao, F.L., Che, X.X., Yu, F.H. and Li, J.M. (2019). Cascading effects of nitrogen, rhizobia and parasitism via a host plant. Flora. 251: 62-67.

  31. Garay, A.F. and Wilhelm, W.W. (1983). Root system characteristics of two soybean isolines undergoing water stress conditions. Agronomy Journal. 75(6): 973-977.

  32. Gerdemann, J.W. and Trappe, J.M. (1974). Endogonaceae in the pacific northwest. Mycologia Memoir. 5: 1-76.

  33. Gilbert, L. and Johnson, D. (2017). Plant–Plant Communication through Common Mycorrhizal Networks. n: How Plants Communicate with their Biotic Environment. Advances in Botanical Research. (pp. 83-97).

  34. Goltapeh, E., Rezaee Danesh, Y., Prasad, R. and Varma, A. (2008). Mycorrhizal Fungi: What We Know and What Should We Know? In Mycorrhiza. [Varma A. (eds)], Springer, Berlin, Heidelberg. Mycorrhiza (pp. 3-27).

  35. Graham, P.H. and Vance, C.P. (2003). Legumes: importance and constraints to greater use. Plant Physiology. 131(3): 872- 877.

  36. Gusmao, M., Siddique, K.H.M., Flower, K., Nesbitt, H. and Veneklaas, E.J. (2012). Water deficit during the reproductive period of grass pea (Lathyrus sativus L.) reduced grain yield but maintained seed size. Journal of Agronomy and Crop Science. 198(6): 430-441.

  37. Habibzadeh, Y., Eivazi, A. and Abedi, M. (2014). Alleviation drought stress of mungbean (Vigna radiata L.) plants by using arbuscular mycorrhizal fungi. International Journal of Agricultural Sciences and Natural Resources. 1(1): 1-6.

  38. Hoekstra, F. A., Golovina, E.A. and Buitink, J. (2001). Mechanisms of plant desiccation tolerance. Trends in Plant Science. 6(9): 431-438.

  39. Jafarzadeh, A.A. and Abbasi, G. (2006). Qualitative land suitability evaluation for the growth of onion, potato, maize and alfalfa on soils of the Khalat pushan research station. Biologia. 61(S19): S349-S352.

  40. James, T.Y., Kauff, F., Schoch, C.L., Matheny, P.B., Hofstetter, V., et al. (2006). Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature. 443(7113): 818-822.

  41. Kakouridis, A., Hagen, J.A., Kan, M.P., Mambelli, S., Feldman, L.J., et al. (2020). Routes to roots: Direct evidence of water transport by arbuscular mycorrhizal fungi to host plants. bioRxiv: 2020.2009.2021.305409.

  42. Kamboj, R. and Nanda, V. (2017). Proximate composition, nutritional profile and health benefits of legumes- A review. Legume Research. 41(3): 325-332.

  43. Karamanos, A.J., Elston, J. and Wadsworth, R.M. (1982). Water stress and leaf growth of field beans (Vicia faba L.) in the field water potentials and laminar expansion. Annals of Botany. 49(6): 815-826.

  44. Khalvati, M.A., Hu, Y., Mozafar, A. and Schmidhalter, U. (2005). Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations and gas exchange of barley subjected to drought stress. Plant Biology. 7(6): 706-712.

  45. Kivlin, S.N., Hawkes, C.V. and Treseder, K.K. (2011). Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biology and Biochemistry. 43(11): 2294-2303.

  46. Li, P., Zhang, Y., Wu, X. and Liu, Y. (2018). Drought stress impact on leaf proteome variations of faba bean (Vicia faba L.) in the Qinghai-Tibet Plateau of China. 3 Biotech. 8(2): 110.

  47. Liu, Y., He, L., An, L., Helgason, T. and Feng, H. (2009). Arbuscular mycorrhizal dynamics in a chronosequence of Caragana korshinskii plantations. FEMS Microbiology Ecology. 67(1): 81-92.

  48. Liu, Z., Li, H., Gou, Z., Zhang, Y., Wang, X., et al. (2020). Genome-wide association study of soybean seed germination under drought stress. Molecular Genetics and Genomics. 295(3): 661-673.

  49. Lugtenberg, B. and Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual Review of  Microbiology. 63: 541-556.

  50. Luo, L., Xia, H. and Lu, B.R. (2019). Editorial: Crop breeding for drought resistance. Frontiers in Plant Science. 10: 314.

  51. Mahmoudi, N., Cruz, C., Mahdhi, M., Mars, M. and Caeiro, M.F. (2019). Arbuscular mycorrhizal fungi in soil, roots and rhizosphere of Medicago truncatula: diversity and heterogeneity under semi-arid conditions. Peer J. 7: e6401.

  52. Marques, M., Pagano, M. and Scotti, M. R. (2001). Dual inoculation of a woody legume (Centrolobium tomentosum) with rhizobia and mycorrhizal fungi in south-eastern Brazil. Agroforestry Systems. 50: 107-117.

  53. Marulanda, A., Azcón, R. and Ruiz-Lozano, J. (2003). Contribution of six arbuscular mycorrhizal fungal isolates to water uptake by Lactuca sativa plants under drought stress. Physiologia Plantarum. 119: 526-533.

  54. Marzban, Z., Faryabi, E. and Torabian, S. (2017). Effects of arbuscular mycorrhizal fungi and Rhizobium on ion content and root characteristics of green bean and maize under intercropping. Acta Agriculturae Slovenica. 109(1): 79-88.

  55. McCorkle, R., Ercolano, E., Lazenby, M., Schulman-Green, D., Schilling, L.S., et al. (2011). Self-management: Enabling and empowering patients living with cancer as a chronic illness. CA-A Cancer Journal for Clinicians. 61(1): 50-62.

  56. Meghvansi, M. K., Prasad, K., Harwani, D. and Mahna, S.K. (2008). Response of soybean cultivars toward inoculation with three arbuscular mycorrhizal fungi and Bradyrhizobium japonicum in the alluvial soil. European Journal of Soil Biology. 44(3): 316-323.

  57. Meister, R., Rajani, M.S., Ruzicka, D. and Schachtman, D.P. (2014). Challenges of modifying root traits in crops for agriculture. Trends in Plant Science. 19(12): 779-788.

  58. Merilo, E., Jalakas, P., Laanemets, K., Mohammadi, O., Hõrak, H., et al. (2015). Abscisic scid transport and homeostasis in the context of stomatal regulation. Molecular Plant. 8(9): 1321-1333.

  59. Mishra, S., Panda, S.K. and Sahoo, L. (2014). Transgenic asiatic grain legumes for salt tolerance and functional genomics. Reviews in Agricultural Science. 2(0): 21-36.

  60. Miyashita, K., Tanakamaru, S., Maitani, T. and Kimura, K. (2005). Recovery responses of photosynthesis, transpiration and stomatal conductance in kidney bean following drought stress. Environmental and Experimental Botany. 53(2): 205-214.

  61. Mohammad Abass, Narges Moradtalab, Elsayed Fathi Abd-Allah, Parvaiz Ahmad and Roghieh Hajiboland. (2016). Plant growth under drought stress: Significance of mineral nutrients. Water Stress and Crop Plants: A Sustainable Approach. 2: 649-668.

  62. Mondal, T., Datta, J.K. and Mondal, N.K. (2017). Chemical fertilizer in conjunction with biofertilizer and vermicompost induced changes in morpho-physiological and bio-chemical traits of mustard crop. Journal of the Saudi Society of Agricultural Sciences. 16(2): 135-144.

  63. Morton, J.B. and Redecker, D. (2000). Two new families of Glomales, Archaeosporaceae and Paraglomaceae, with two new genera Archaeospora and Paraglomus, based on concordant molecular and morphological characters. Mycologia. 93(1): 181-195.

  64. Morton, J.B., Benny, G.L. (1990). Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): a new order, Glomales, two new suborders, Glomineae and Gigasporineae and two new families, Acaulosporaceae and Gigasporaceae, with an emendation of Glomaceae. Mycotaxon. 37: 471-491.

  65. Mungai, L.M., Snapp, S., Messina, J.P., Chikowo, R., Smith, A., et al. (2016). Smallholder farms and the potential for sustainable intensification. Frontiers in Plant Science, 7: 1720.

  66. Nadeem, M., Li, J., Yahya, M., Sher, A., Ma, C., et al. (2019). Research progress and perspective on drought stress in legumes: A review. International Journal of Molecular Sciences. 20(10): 2541.

  67. Ndidi, U.S., Ndidi, C.U., Aimola, I.A., Bassa, O.Y., Mankilik, M., et al. (2014). Effects of processing (boiling and roasting) on the nutritional and antinutritional properties of bambara groundnuts [Vigna subterranea (L.) Verdc.] from Southern Kaduna, Nigeria. Journal of Food Processing, 2014: 1-9.

  68. Nezar, S., Haddad, N., Alqudah, A.M. (2011). Yield potential evaluation in chickpea genotypes under late terminal drought in relation to the length of reproductive stage. Italian Journal of Agronomy. 4(3):111-117.

  69. Nisha, Walia, M., Batra, N., Gera, R. and Goyal, S. (2018). Effect of moisture content on biophysical characteristics of chickpea cultivars. Legume Research. 41(3): 432-435.

  70. O’Brian, M. R., Vance, C. P. and Vandenbosch, K.A. (2009). Legume focus: Model species sequenced, mutagenesis approaches extended and debut of a new model. Plant Physiology. 151(3): 969.

  71. Olawuyi, O.J., Odebode, Olakojo, S., Popoola, A., Akanmu, A., et al. (2014). Host-pathogen interaction of maize (Zea mays L.) and Aspergillus niger as influenced by arbuscular mycorrhizal fungi (Glomus deserticola). Archives of Agronomy and Soil Science. 60(11): 1577-1591.

  72. Ouledali, S., Ennajeh, M., Zrig, A., Gianinazzi, S. and Khemira, H. (2018). Estimating the contribution of arbuscular mycorrhizal fungi to drought tolerance of potted olive trees (Olea europaea). Acta Physiologiae Plantarum. 40(5):81.

  73. Park, J., Lee, Y., Martinoia, E. and Geisler, M. (2017). Plant hormone transporters: What we know and what we would like to know. BMC Biology. 15(1): 93. 

  74. Pavithra, D. and Yapa, N. (2018). Arbuscular mycorrhizal fungi inoculation enhances drought stress tolerance of plants. Groundwater for Sustainable Development. 7: 490-494.

  75. Porcel, R. and Ruiz-Lozano, J. (2004). Arbuscular mycorrhizal influence on leaf water potential, solute accumulation and oxidative stress in soybean plants subjected to drought stress. Journal of Experimental Botany. 55: 1743-1750.

  76. Pringle, A. (2009). Mycorrhizal networks. Current Biology. 19(18): R838-R839.

  77. Purahong, W., Wubet, T., Kruger, D. and Buscot, F. (2017). Molecular evidence strongly supports deadwood-inhabiting fungi exhibiting unexpected tree species preferences in temperate forests. ISME Journal. 12: 289-295.

  78. Pushpavalli, R., Zaman-Allah, M., Turner, N.C., Baddam, R., Rao, M.V. et al. (2015). Higher flower and seed number leads to higher yield under water stress conditions imposed during reproduction in chickpea. Functional Plant Biology. 42(2): 162-174.

  79. Rajan, S., Bagyaraj, D. and Arpana, J. (2005). Sreening for an efficient arbuscular mycorrhizal fungi for inoculating Albizzia lebbeck. Soil Biology and Biochemistry. 25: 110-115.

  80. Recchia, G.H., Konzen, E.R., Cassieri, F., Caldas, D.G.G. and Tsai, S.M. (2018). Arbuscular mycorrhizal symbiosis leads to differential regulation of drought-responsive genes in tissue-specific root cells of common bean. Frontiers in Microbiology. 9: 1339. 

  81. Redecker, D., Schussler, A., Stockinger, H., Sturmer, S.L., Morton, J.B., et al. (2013). An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota).  Mycorrhiza. 23(7): 515-531.

  82. Romdhane, S., Spor, A., Aubert, J., Bru, D., Breuil, M.C., et al. (2021). Unraveling negative biotic interactions determining soil microbial community assembly and functioning. The ISME Journal. In press. https://doi.org/10.1038/s41396-021- 01076-9.

  83. Rubiales, D. and Mikic, A. (2015). Introduction: Legumes in sustainable agriculture. Critical Reviews in Plant Sciences. 34:1-3.

  84. Ruth Muruiki, P.K., Vincent, V., Rao, G., Said, S. and Moses, S. (2018). Effect of drought stress on yield performance of parental chickpea genotypes in semi-arid Tropics. Journal of Life Sciences. 12(3): 159-168.

  85. Saglam, A., Saruhan, N., Terzi, R. and Kadioglu, A. (2011). The relations between antioxidant enzymes and chlorophyll fluorescence parameters in common bean cultivars differing in sensitivity to drought stress. Russian Journal of Plant Physiology. 58(1): 60-68.

  86. Scheublin, T.R. and van der Heijden, M.G. (2006). Arbuscular mycorrhizal fungi colonize nonfixing root nodules of several legume species. New Phytologist. 172(4): 732-738.

  87. Scheublin, T., Ridgway, K., Young, J.P. and Van der Heijden, M. (2004). Nonlegumes, legumes and root nodules harbor different arbuscular mycorrhizal fungal communities. Applied and Environmental Microbiology. 70(10): 6240-6246.

  88. Schüâler, A., Schwarzott, D. and Walker, C. (2001). A new fungal phylum, the Glomeromycota: Phylogeny and evolution. Mycological Research. 105(12): 1413-1421.

  89. Selmar, D. and Kleinwachter, M. (2013). Stress enhances the synthesis of secondary plant products: the impact of stress-related over-reduction on the accumulation of natural products. Plant and Cell Physiology. 54(6): 817-826.

  90. Selosse, M.A., Strullu-Derrien, C., Martin, F.M., Kamoun, S. and Kenrick, P. (2015). Plants, fungi and oomycetes a 400-million year affair that shapes the biosphere. The New Phytologist. 206(2): 501-506.

  91. Shaheen, T., Rahman, M.U., Shahid Riaz, M., Zafar, Y. and Rahman, M.U. (2016). Soybean Production and Drought Stress. In Abiotic and Biotic Stresses in Soybean Production (pp. 177-196).

  92. Shi, H., Ye, T., Zhu, J. K. and Chan, Z. (2014). Constitutive production of nitric oxide leads to enhanced drought stress resistance and extensive transcriptional reprogramming in Arabidopsis. Journal of Experimental Botany. 65(15): 4119-4131.

  93. Siddiqui, M.H., Al-Khaishany, M.Y., Al-Qutami, M.A., Al-Whaibi, M.H., Grover, A., et al. (2015). Response of different genotypes of faba bean plant to drought stress. International Journal of Molecular Science. 16(5): 10214-10227.

  94. Siddiqui, M.N., Léon, J., Naz, A.A. and Ballvora, A. (2021). Genetics and genomics of root system variation in adaptation to drought stress in cereal crops. Journal of Experimental Botany. 72(4): 1007-1019.

  95. Singh, P.K., Singh, M. and Tripathi, B.N. (2013). Glomalin: An arbuscular mycorrhizal fungal soil protein. Protoplasma. 250(3): 663-669.

  96. Singh, S.P. (2007). Drought resistance in the race durango dry bean landraces and cultivars. Agronomy Journal. 99(5): 1219-1225.

  97. Smith, F.A. and Smith, S.E. (1997). Tansley review No. 96 structural diversity in (vesicular)- arbuscular mycorrhizal symbioses. New Phytologist. 137: 373-388.

  98. Smith, S.E. and Read, D.J. (2008). Mycorrhizal symbiosis, 3rd edn. Academic press, London.

  99. Sofi, P., Maduraimuthu, D., Siddique, K. and Prasad, P.V.V. (2018). Reproductive fitness in common bean (Phaseolus vulgaris L.) under drought stress is associated with root length and volume. Indian Journal of Plant Physiology. 23(4). DOI: 10.1007/s40502-018-0429-x.

  100. Sponchiado, B.N., White, J.W., Castillo, J.A. and Jones, P.G. (1989). Root growth of four common bean cultivars in relation to drought tolerance in environments with contrasting soil types. Experimental Agriculture. 25(2): 249-257.

  101. Stephen Beebe, J.R., Jarvis, A., Rao, I.M., Mosquera, G., Bueno, J.M. and Blair, M.W. (2011). Genetic Improvement of Common Beans and the Challenges of Climate Change. In: Crop Adaptation to Climate Change, John Wiley and Sons, Inc, Oxford (GB): 356-369.

  102. Stoop, J.M.H., Williamson, J.D. and Mason Pharr, D. (1996). Mannitol metabolism in plants: A method for coping with stress. Trends in Plant Science. 1(5): 139-144.

  103. Tadros, W. and Laarman, J.J. (1982). Current Concepts on the Biology, Evolution and Taxonomy of Tissue Cyst-Forming Eimeriid Coccidia. In: Advances in Parasitology Volume 20 (pp. 293-468).

  104. van der Heijden, M.G., Bardgett, R.D. and van Straalen, N.M. (2008). The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters.11(3): 296-310.

  105. Wang, W., Wang, C., Pan, D., Zhang, Y., Luo, B., et al. (2018). Effects of drought stress on photosynthesis and chlorophyll fluorescence images of soybean (Glycine max) seedlings. International Journal of Agricultural and Biological Engineering. 11(2): 196-201.

  106. Wasson, A.P., Richards, R.A., Chatrath, R., Misra, S.C., Prasad, S.V. et al. (2012). Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. Journal of Experimental Botany. 63(9): 3485- 3498.

  107. Xing, X., Jiang, H., Zhou, Q., Xing, H., Jiang, H., et al. (2016). Improved drought tolerance by early IAA- and ABA- dependent H2O2 accumulation induced by á-naphthaleneacetic acid in soybean plants. Plant Growth Regulation. 80(3): 303-314.

  108. Yao, Q., Li, X., Feng, G. and Christie, P. (2001). Mobilization of sparingly soluble inorganic phosphates by external mycelium of an arbuscular mycorrhizal fungus. Plant and Soil. 230: 279-285.

  109. Zhang, Z., Zhang, J., Xu, G., Zhou, L. and Li, Y. (2019). Arbuscular mycorrhizal fungi improve the growth and drought tolerance of Zenia insignis seedlings under drought stress. New Forests. 50(4): 593-604.

Editorial Board

View all (0)