Legume Research

  • Chief EditorJ. S. Sandhu

  • Print ISSN 0250-5371

  • Online ISSN 0976-0571

  • NAAS Rating 6.67

  • SJR .391

  • Impact Factor .669 (2022)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Legume Research, volume 45 issue 1 (january 2022) : 90-96

Assessment of Soybean Resistance Level to Pod Sucking Bug Riptortus linearis F. (Hemiptera: Coreidae) based on No-choice and Free-choice Tests

A. Krisnawati, K. Noerwijati, S.W. Indiati, Trustinah, E. Yusnawan, M.M. Adie
1Indonesian Legume and Tuber Crops Research Institute, Jl. Raya Kendalpayak Km 8, PO Box 66 Malang 65101, East Java, Indonesia.
  • Submitted26-08-2021|

  • Accepted11-11-2021|

  • First Online 05-01-2022|

  • doi 10.18805/LRF-650

Cite article:- Krisnawati A., Noerwijati K., Indiati S.W., Trustinah, Yusnawan E., Adie M.M. (2022). Assessment of Soybean Resistance Level to Pod Sucking Bug Riptortus linearis F. (Hemiptera: Coreidae) based on No-choice and Free-choice Tests. Legume Research. 45(1): 90-96. doi: 10.18805/LRF-650.
Background: The infestation of the pod sucking bug Riptortus linearis is one of the limiting factors of soybean productivity in Indonesia. The research aims were to identify the level of resistance to the pod sucking bug R. linearis on several soybean genotypes based on the no-choice test (NCT) and free-choice tests (FCT).
Methods: The genetic materials used were 49 soybean genotypes. The study was conducted in the Indonesian Legumes and Tuber Crops Research Institute (ILETRI) from August to December 2020, using the randomized block design in triplicates. The evaluation for pod sucking bug resistance was based on NCT and FCT.
Result: The FCT resulted in two genotypes with a consistent moderately resistance level (20-40% of damage intensity) to pod sucking bug based on the pod and seed damage intensity. The NCT method resulted in five genotypes as moderately resistant (20-40% of damage intensity) to pod sucking bug based on the seed damage. The NCT resulted in higher average intensity of pod and seed damage (80.25% and 71.23%, respectively) than the FCT (69.91% and 69.09%, respectively). Two soybean genotypes (Degra/Anjasmoro-1-559 and Anjasmoro/IAC100-2-618) with a consistent moderately resistance level could be used for cultivar improvement in the breeding program. The pod trichome density was suggested to be one of the effective morphological defenses against the pod sucking bug attack.

  1. Abudulai, M. (2018). Influence of planting date and cultivar on pod-sucking bug infestation and yield of soybean in northern Ghana. Annals of Agricultural Sciences. 63: 77-81. doi: 10.1016/j.aoas.2018.05.004.

  2. Adie, M.M. and Krisnawati, A. (2017). Variability of pod trichome and agronomic characters of several soybean genotypes. Biodiversitas. 18: 416-421. doi: 10.13057/biodiv/d180153.

  3. Agale, S.V., Gupta, R., Rangarao, G.V. and Wani, S.P. (2021). efficacy of some biopesticides against Helicoverpa armigera (Hubner) in pigeon pea under natural condition. Legume Research. 44: 463-471.

  4. Asadi, Purwantoro, A. and Yakub, S. (2012). Genetic control of soybean resistance to soybean pod sucker (Riptortus linearis L.). Agrivita. 34: 28-35. doi: 10.17503/agrivita.v34i1.141.

  5. Bae, S.D., Kim, H.J. and Mainali, B.P. (2014). Infestation of Riptortus pedestris (Fabricius) decreases the nutritional quality and germination poten­tial of soybean seeds. Journal of Asia-Pacific Entomology. 17: 477-481. doi: 10.1016/j.aspen.2014.04.006.

  6. Baur, M.E., Boethel, D.J., Boyd, M.L., Bowers, G.R., Way, M.O. and Heatherly, L.G. (2000). Arthropod populations in early soybean production systems in the mid-south. Environmental Entomology. 29: 312-328. doi: 10.1093/ee/29.2.312.

  7. Bayu, M.S.Y.I., Krisnawati, A. and Adie, M.M. (2017). Response of Soybean Genotypes against Armyworm, Spodoptera litura based on No-choice Test. IOP Conference Series and Earth Environmental Science. 102: 012033. doi: 10.1088/1755-1315/102/1/012033.

  8. Charalabidis, A. Dechaume-Moncharmont, F.X., Petit, S. and Bohan, D.A. (2017). Risk of predation makes foragers less choosy about their food. PloS ONE. 12(11): e0187167.

  9. Esquivel, J.F. (2015). Stylet penetration estimates for a suite of phytophagous Hemipteran pests of row crops. Environmental Entomology. 44: 619-626. doi: 10.1093/ee/nvv027.

  10. Indiati S.W., Bejo and Rahayu, M. (2017). Diversity of mung bean insect pests and their natural enemies in farmers’ fields in East Java, Indonesia. Biodiversitas. 18: 1300-1307. doi: 10.13057/biodiv/d180403.

  11. Jat, B.L., Dahiya, K.K., Yadav, S.S. and Mandhania, S. (2021). Morpho physico-chemical components of resistance to pod borer, Helicoverpa armigera (Hübner) in pigeonpea [Cajanus cajan (L.) Millspaugh]. Legume Research. 44: 967-976.

  12. Karabourniotis, G., Liakopoulos, G., Nikolopoulos, D. et al. (2020). Protective and defensive roles of non-glandular trichomes against multiple stresses: structure-function coordination. Journal of Forestry Research. 31: 1-12. doi: 10.1007/ s11676-019-01034-4.

  13. Kim, S. and Lim, U.T. (2010). New soybean variety, Agakong, as a host of Riptortus pedestris (Fabricius): Study on field occurrence and biological attributes in the laboratory. Journal of Asia-Pacific Entomology. 13: 261-265. doi: 10.1016/j.aspen.2010.03.005.

  14. Krisnawati, A. and Adie, M.M. (2018). Evaluation of soybean resistance to pod-sucking bug, Riptortus linearis F. and performance of its agronomic characters. Biosaintifika. 10: 213-222. doi: 10.15294/biosaintifika.v10i1.12806.

  15. Krisnawati, A. and Adie, M.M. (2019). The resistance of soybean genotypes to the pod feeding insects. Planta Tropika: Journal of Agro Science. 7: 48-57. doi: 10.18196/pt.2019. 093.48-57

  16. Krisnawati, A., Bayu, M.S.Y.I. and Adie, M.M. (2016). Identification of soybean resistance to pod sucking bug (Riptortus linearis) by no-choice test. Biosaintifika Journal of Biology and Biology Education. 8: 407-414.  

  17. Krisnawati, A., Bayu, M.S.Y.I. and Adie, M.M. (2017). Screening of soybean genotypes for resistance to pod sucking bug, Riptortus linearis. Nusantara Bioscience. 9: 181-187. doi: 10.13057/nusbiosci/n090213.

  18. Kuswantoro, H., Mejaya, I.M.J. and Baliadi, Y. (2020). Determination of agronomical characters as the resistance attributes of twenty soybean varieties to stink bug (Nezara viridula L.). Agrivita. 42: 53-67. doi: 10.17503/agrivita.v42i1.2121.

  19. Leonard, B.R., Boquet, D.J., Padgett, B., Davis, J.A., Schneider, R., Griffin, J.L., Valverde, R.A. and Levy, R.J. Jr. (2011). Soybean green plant malady contributing factors and mitigation. Louisiana Agriculture. 54: 32-34.

  20. Li, W., Gao, Y., Hu, Y., Chen, J., Zhang, J. and Shi, S. (2021). Field cage assessment of feeding damage by Riptortus pedestris on soybeans in China. Insects. 12: 255. doi: 10.3390/insects12030255.

  21. Mainali, B.P., Kim, H.J., Yoon, Y.N., Oh, I.S. and Bae, S.D. (2014). Evaluation of different leguminous seeds as food sources for the bean bug Riptortus pedestris. Journal of Asia-Pacific Entomology. 17: 115-117. doi: 10.1016/j.aspen. 2013.11.007.

  22. Maulidah, L. (2006). Character variability of soybean pod morphology [Glycine max (L.) Merrill] and its relation with their resistance to pod sucking bug Riptortus linearis F. Thesis, University of Muhammadiyah Malang. Malang, Indonesia. 

  23. Olatunde, G.O., Biobaku, I.A., Ojo, D.K., Pitan, O.O.R. and Adegbite, E.A. (2007). Inheritance of resistance in cowpea (Vigna unguiculata) to the pod-sucking bug Clavigralla tomentosicollis (Hemiptera: Coreidae). Tropical Science. 47: 128-133. doi: 10.1002/ts.206.

  24. Panizzi, A.R. and Silva, F.A.C. (2009). Insects sucking seeds (Heteroptera). In: Bioecology and Insect Nutrition. [Panizzi, A.R., Parra, J.R.P. (Eds.)], Embrapa, Brasilia.

  25. Pinheiro, J.B., Vello, N.A., Rossetto, C.J. and Zucchi, M.I. (2005). Potential of soybean genotypes as insect resistance sources. Crop Breeding and Applied Biotechnology. 5: 293-300.

  26. Rahayu, M., Bande, L.O.S., Hasan, Yuswana, A. and Rinambo, F. (2018). Contribution of pod borer pests to soybean crop production (case in Pondidaha, Konawe District, Southeast Sulawesi). IOP Conference Series and Earth Environmental Science. 122: 012039. doi: 10.1088/1755-1315/122/1/012039.

  27. Rahman, M.M. and Lim, U.T. (2017). Evaluation of mature soybean pods as a food source for two pod-sucking bugs, Riptortus pedestris (Hemiptera: Alydidae) and Halyomorpha halys (Hemiptera: Pentatomidae). PLoS ONE. 12: e0176187. doi: 10.1371/journal.pone.0176187. 

  28. RStudio Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  29. Santos, M.D.F., Möller, M., Clough, S.J. and Pinheiro, J.B. (2018). Heritability of agronomic traits correlated with reduced stink bug damage in an F2:3 soybean population derived from IAC-100. Journal of Crop Improvement. 32: 1-18. doi: 10.1080/15427528.2017.1370404.

  30. Sarjan, M., Fathiyani, B.D.S. and Yassi, A. (2021). Attack Intensity of Sucking Pods Insect Pest (Riptortus linearis) in Different Age of Soybean under Drought Stress Conditions. IOP Conference Series and Earth Environmental Science. 681: 012015. doi:10.1088/1755-1315/681/1/012015.

  31. Seetharamu, P., Swathi, K., Dhurua, S., Suresh, M., Govindarao, S. and Sreesandhya, N. (2020). Bioefficacy of chemical insecticides against major sucking insect pests on grain legumes in India- A review. Legume Research. 43: 1-7. doi: 10.18805/LR-4074.

  32. Singh, R.K. and Chaudhary, B.D. (1977). Biometrical Methods in Quantitative Genetic Analysis. Kalyani Publisher. India.

  33. Smaniotto, L.F. and Panizzi, A.R. (2015). Interactions of selected species of stink bugs (Hemiptera: Heteroptera: Pentatomidae) from leguminous crops with plants in the Neotropics. Florida Entomologist. 98: 7-17. doi: 10.1653/024.098.0103.

  34. Smith, C.M. (2005). Plant Resistance to Arthropods: Molecular and Conventional Approaches. Netherlands: Aa Dordrecht, Springer.

  35. Souza, E.S., Baldin, E.L.L., da Silva, J.P.G.F. and Lourenção, A.L. (2013). Feeding preference of Nezara viridula (Hemiptera: Pentatomidae) and attractiveness of soybean genotypes. Chilean Journal of Agricultural Research. 73: 351-357. doi: 10.4067/S0718-58392013000400004.

  36. Suharsono and Sulistyowati, L. (2012). Expression of resistance of soybean to the pod sucking bug Riptortus linearis F. (Hemiptera: Coreidae). Agrivita. 34(1): 55-59. doi: 10.17 503/agrivita.v34i1.137.

  37. Traore, F., Waongo, A., Sanou, A., Ba, M.N., Dabiré, C., Sanon, A. and Pittendrigh, B.R. (2019). Effects of cold- and hot- pressed neem oil on eggs of the pod-sucking bug Clavigralla tomentosicollis Stål (Hemiptera: Coreidae) and its parasitoid Gryon fulviventre Crawford (Hymenoptera: Scelionidae) under laboratory conditions. African Entomology. 27: 395- 402. doi: 10.4001/003.027.0395.

  38. Ulhoa, LA., Barrigossi, J.A.F., Borges, M., Laumann, R.A. and Blassioli-Moraes, M.C. (2020). Differential induction of volatiles in rice plants by two stink bug species influence behaviour of conspecifics and their natural enemy Telenomus podisi. Entomologia Experimentalis et Applicata. 168: 76-90. doi: 10.1111/eea.12869.

  39. Van Driesche, R.G. and Murray, T.J.  (2004). Overview of Testing Schemes and Designs Used to Estimate Host Ranges. In: Assessing Host Ranges for Parasitoids and Predators used in Classical Biological Control: A Guide to Best Practice. [Van Driesche RG, Reardon R (eds.)]. USDA Forest Service, Morgantown, West Virginia, USA.

  40. War, A.R., Paulraj, M.G., Ahmad, T., Buhroo, A.A., Hussain, B., Ignacimuthu, S., Sharma, H.C. (2012). Mechanisms of plant defense against insect herbivores. Plant Signaling Behaviour. 7: 1306-1320. https://doi.org/10.4161/psb. 21663.

Editorial Board

View all (0)