Legume Research
Chief EditorJ. S. Sandhu
Print ISSN 0250-5371
Online ISSN 0976-0571
NAAS Rating 6.80
SJR 0.391
Impact Factor 0.8 (2024)
Chief EditorJ. S. Sandhu
Print ISSN 0250-5371
Online ISSN 0976-0571
NAAS Rating 6.80
SJR 0.391
Impact Factor 0.8 (2024)
Impacts of Rhizobium Strain Ar02 on the Nodulation, Growth, Nitrogen (N2) Fixation Rate and ion Accumulation in Phaseolus vulgaris L. under Salt Stress
Submitted01-07-2021|
Accepted20-08-2021|
First Online 22-09-2021|
Background: Phaseolus vulgaris L. -rhizobia symbiosis has effectively enhanced common bean productivity via multiple biological mechanisms. This study aims to assess the impacts of the strain of Rhizobium on the nodulation, growth, nitrogen (N2) fixation rate and ion accumulation within Phaseolus vulgaris L. under salt stress.
Methods: The Coco Blanc cultivar of the common bean was inoculated with the Ar02 rhizobia strain at 15 days after germination. Bean plants were inoculated in perlite culture to which salt was added in concentrations of 0, 25, 50 and 75 mmol L-1 NaCl.
Result: Inoculation with the Ar02 rhizobia strain led to infective and effective symbiosis with the common bean plants exposed to saline solutions and non-saline solutions, respectively. Nodule biomass and nitrogen content declined under salt stress but maintained a higher number of nodules and nodule biomass at 75 mM NaCl. Plant root and shoot length increased with higher biomass under saline conditions, significantly more than the non-inoculated plant without salt. However, the progressive addition of NaCl reduced the growth of the root and shoot and the biomass within the inoculated plant. Salinity led to increased Na+ within the plant’s shoot, along with a reduction in Ca+2 and K+ concentrations. The shoot’s Ca+2, Na+ and K+ content were higher in the inoculated plant than the non-inoculated. The salt tolerance in common bean plants inoculated with Ar02 rhizobia was linked with the plant’s capability to sustain nodulation and enhance Na+ concentration in the shoot. Furthermore, salt tolerance within the same variety inoculated with Rhizobium was linked to a decline in the Ca+ and K+ concentrations in the shoot region of salt-exposed plants.
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.