Determination of Biochemical Composition and Pigment Content in Legume and Cereal Microgreens

DOI: 10.18805/LR-635    | Article Id: LR-635 | Page : 1018-1025
Citation :- Determination of Biochemical Composition and Pigment Content in Legume and Cereal Microgreens.Legume Research.2021.(44):1018-1025
F. Altuner faltuner@gmail.com
Address : Department of Field Crops, Van Yuzuncu Yil University, Gevas Vocational School, Van, Turkey.
Submitted Date : 5-06-2021
Accepted Date : 8-07-2021


Background: Legumes and cereals microgreens are consumed both in healthy nutrition and as a natural food against many degenerative diseases due to their rich bioactive content. The research was carried out to determine the biochemical contents of 5 legumes and 7 cereals.
Methods: The research was conducted in Van Yuzuncu Yıl University Field Crops Department Laboratory in 2020, in a controlled growing environment, according to the completely randomized experimental design. Total antioxidant activity, total phenolic, total flavonoid and total ascorbic acid contents and total Chlorophyll, Chlorophyll a, Chlorophyll b and Carotenoid contents and correlation between them were determined.
Result: The differences between the means of all traits were found to be significant. The biochemical contents of cereals were 1.6-7 times higher than legumes. There was no big difference between the pigment values. In legumes, Bilensoy alfalfa had the highest total antioxidat activity and total flavonoid content, Uzbek lentil total phenolic content and Goynuk bean had the highest Total ascorbic acid. In cereals, Kirklar oat had the highest total antioxidat activity, total phenolic, total flavonoid and total ascorbic acid  contents, while Larende barley had the lowest values (except total ascorbic acid content). While total Chlorophyll and Chlorophyll a amounts were highest in Kirklar barley and lowest in Uzbek lentils, the opposite situation occurred in Chlorophyll b and Carotenoid amounts. There was no significant correlation between biochemical parameters in legumes. There was a positive and significant correlation between total phenolic content with total antioxidant activity and between total ascorbic acid with total fenolic content in cereals. There were positive and significant correlations between all pigment parameters in both legumes and cereals.


Bioactive contents Cereals Correlation Legumes Pigment contents Total antioxidant


  1. Aisyah, S., Vincken, J.P., Andini, S., Mardiah, Z., and Gruppen, H. (2016). Compositional changes in (iso) flavonoids and estrogenic activity of three edible lupinus species by germination and rhizopus-elicitation. Phytochem. 122: 65-75. DOI: 10.1016/j.phytochem.2015.12.015.
  2. Amarowicz, R., Troszyńska, A., Baryłko‐Pıkıelna, N. and Shahidi, F. (2004). Polyphenolics extracts from legume seeds: correlations between total antioxidant activity, total phenolics content, tannins content and astringency. Journal of Food Lipids. 11(4): 278-286. DOI: 10.1111/j.1745-4522.2004.01143.x.
  3. AOAC (1990). Official methods of analysis of the Association of Official Analytical Chemists, 15th ed. Arlington VA. pp. 1058-1059. https://www.aoac.org/.
  4. Bubelova, Z., Sumczynski, D. and Salek, R.N. (2018). Effect of cooking and germination on antioxidant activity, total polyphenols and flavonoids, fiber content and digestibility of lentils (Lens culinaris L.). Journal of Food Processing and Preservation. 42(1): e13388. DOI: 10.1111/jfpp.13388.
  5. Chiriac, E.R., Chiþescu, C.L., Sandru, C., Geanã, E.I., Lupoae, M., Dobre, M. and Boscencu, R. (2020). Comparative Study of the Bioactive Properties and Elemental Composition of Red Clover (Trifolium pratense) and Alfalfa (Medicago sativa) Sprouts during Germination. Applied Sciences. 10(20): 7249. DOI: 10.3390/app10207249.
  6. Colgecen, H., Koca, U. and Buyukkartal, H. (2020). Use of Red Clover (Trifolium pratense L.) Seeds in Human Therapeutics. In Nuts and Seeds in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands. 421-427. DOI: 10.1016/ B978-0-12-818553-7.00029-2.
  7. Djordjevic, T.M., Šiler-Marinkovic, S.S., and Dimitrijevic-Brankovic, S.I. (2011). Antioxidant activity and total phenolic content in some cereals and legumes. International Journal of Food Properties. 14(1): 175-184. DOI: 10.1080/10942910903160364.
  8. Fidan, E. and Ekincialp, A. (2017). Investigation of the Response of Some Bean (Phaseolus vulgaris L.) Genotypes to Different Levels of Salt Stress. Yuzuncu Yil University Journal of Agricultural Sciences. 27(4): 558-568. DOI: 10.29133/ yyutbd.332012.
  9. Ghoora, M.D., Haldipur, A.C. and Srividya, N. (2020). Comparative evaluation of phytochemical content, antioxidant capacities and overall antioxidant potential of select culinary microgreens. Journal of Agriculture and Food Research. 2: 100046. DOI: 10.1016/j.jafr.2020.100046.
  10. Guo, X., Li, T., Tang, K. and Liu, R.H. (2012). Effect of germination on phytochemical profiles and antioxidant activity of mung bean sprouts (Vigna radiata). Journal of Agricultural and Food Chemistry. 60: 11050-11055. DOI: 10.1021/jf304443u.
  11. Islam, M.Z., Park, B. J. and Lee, Y.T. (2019). Effect of salinity stress on bioactive compounds and antioxidant activity of wheat microgreen extract under organic cultivation conditions. International Journal of Biological Macromolecules. 140: 631-636. DOI: 10.1016/j.ijbiomac.2019.08.090.
  12. Islam, M.Z., Park, B.J., Kang, H.M. and Lee, Y.T. (2020). Influence of selenium biofortification on the bioactive compounds and antioxidant activity of wheat microgreen extract. Food Chemistry. 309: 125763. DOI: 10.1016/j.foodchem.2019.125763.
  13. Islam, M.Z., Park, B.J. and Lee, Y.T. (2021). Bioactive Phytochemicals and Antioxidant Capacity of Wheatgrass Treated with Salicylic Acid under Organic Soil Cultivation. Chemistry and Biodiversity. 18(2): e2000861.
  14. Kabtni, S., Sdouga, D., Rebey, I.B., Save, M., Trifi-Farah, N., Fauconnier, M.L. and Marghali, S. (2020). Influence of climate variation on phenolic composition and antioxidant capacity of Medicago minima populations. Scientific Reports. 10(1): 1-15. DOI: 10.1038/s41598-020-65160-4.
  15. Klopsch, R., Baldermann, S., Voss, A., Rohn, S., Schreiner, M. and Neugart, S. (2018). Bread enriched with legume microgreens and leaves-ontogenetic and baking-driven changes in the profile of secondary plant metabolites. Frontiers in chemistry. 6: 322. DOI: 10.3389/fchem. 2018.00322.
  16. Ku, Y.S., Ng, M.S., Cheng, S.S., Lo, A.W.Y., Xiao, Z., Shin, T.S. and Lam, H.M. (2020). Understanding the composition, biosynthesis, accumulation and transport of flavonoids in crops for the promotion of crops as healthy sources of flavonoids for human Consumption. Nutrients. 12(6): 1717. DOI: 10.3390/nu12061717.
  17. Kurian, M.S. and Megha, P.R. (2020). Assessment of variation in nutrient concentration and antioxidant activity of raw seeds, sprouts and microgreens of Vigna radiata (L.). Wilczek and Cicer arietinum L. In AIP Conference Proceedings. 2263: 1, p. 030005. AIP Publishing LLC. DOI: 10.1063/ 5.0018781.
  18. Kusvuran A. (2015). The effects of salt stress on the germination and antioxidative enzyme activityof Hungarian vetch (Vicia pannonica Crantz.) varieties. Legume Research. 38: 51-59. DOI:10.5958/0976-0571.2015.00009.0.
  19. Kusvuran, S. and Dasgan, H.Y. (2017). Effects of drought stress on physiological and biochemical changes in Phaseolus vulgaris L. Legume Res. 40(1): 55-62. DOI: 10.18805/ lr.v0i0.7025.
  20. Kyriacou, M.C., El-Nakhel, C., Graziani, G., Pannico, A., Soteriou, G.A., Giordano, M. And Rouphael, Y. (2019). Functional quality in novel food sources: Genotypic variation in the nutritive and phytochemical composition of thirteen microgreens species. Food Chemistry. 277: 107-118. DOI: 10.1016/j.foodchem.2018.10.098.
  21. Lichtenthaler, H.K. and Welburn, A.R. (1985). Determination of Total Carotenoids and Chlorophylls A and B of Leaf in Different Solvents. Biol. Soc. Trans. 11: 591-592. DOI: 10.1042/ bst0110591.
  22. Liu, Z., Liu, Y., Pu, Z., Wang, J., Zheng, Y., Li, Y. and Wei, Y. (2013). Regulation, evolution and functionality of flavonoids in cereal crops. Biotechnology letters. 35(11): 1765-1780. DOI: 10.1007/s10529-013-1277-4.
  23. Lutz, M., Jorquera, K., Cancino, B., Ruby, R. and Henriquez, C. (2011). Phenolics and antioxidant capacity of table grape (Vitis vinifera L.) Cultivars Grown in Chile. Journal of Food Science. 76: 1088-1093. DOI: 10.1111/j.1750 3841.2011.02298.x.
  24. Marathe, S.A., Rajalakshmi, V., Jamdar, S.N., and Sharma, A. (2011). Comparative study on antioxidant activity of different varieties of commonly consumed legumes in India. Food and Chemical Toxicology. 49(9): 2005-2012. DOI: 10.1016/j.fct.2011.04.039
  25. Niroula, A., Amgain, N., Rashmi, K.C., Adhikari, S. and Acharya, J. (2021). Pigments, ascorbic acid, total polyphenols and antioxidant capacities in deetiolated barley (Hordeum vulgare) and wheat (Triticum aestivum) microgreens. Food Chemistry. 354: 129491. DOI: 10.1016/j.foodchem. 2021. 129491.
  26. Niroula, A., Khatri, S., Timilsina, R., Khadka, D., Khadka, A. and Ojha, P. (2019). Profile of chlorophylls and carotenoids of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) microgreens. J. Food Sci Technol  56(5): 2758- 2763. DOI: 10.1007/s13197-019-03768-9
  27. Obanda, M. and Owuor, P.O. (1997). Flavanol composition and caffeine content of gren leaf as quality potential indicators of Kenyan black teas. Journal of the Science of Food and Agriculture. 74: 209-215. DOI: 10.1002/(SICI)1097- 0010(199706)74:2<209::AID-JSFA789>3.0.CO;2-4.
  28. Oomah, B.D., Caspar, F., Malcomson, L.J. and Bellido, A.S. (2011). Phenolics and antioxidant activity of lentil and pea hulls. Food Research International. 44: 436-441. DOI: 10.1016/ j.foodres.2010.09.027Get.
  29. Quettier-Deleu, C., Gressier, B., Vasseur, J., Dine, T., Brunet, J., Luyck, M, Cazin, M., Cazin, J.C., Bailleul, F. and Trotin, F. (2000). Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. Journal of Ethnopharmacology. 72: 35-40.
  30. Rafiñska, K., Pomastowski, P., Wrona, O., Górecki, R. and Buszewski, B. (2017). Medicago sativa as a source of secondary metabolites for agriculture and pharmaceutical industry. Phytochem. Lett. 20: 520-539. DOI: 10.1016/j.phytol. 2016.12.006.
  31. Samuolienė, G., Viršilė, A., Brazaitytė, A., Jankauskienė, J., Sakalauskienė, S., Vaštakaitė, V. and Duchovskis, P. (2017). Blue light dosage affects carotenoids and tocopherols in microgreens. Food Chemistry. 228: 50-56.
  32. Sreeramulu, D., Reddy, C. and Raghunath, M. (2009). Antioxidant activity of commonly consumed cereals, millets, pulses and legumes in India. Indian Journal of Biochemistry and Biophysics. 46: 112-115.
  33. Tuncturk, R., Kulaz, H., and Ciftci, V. (2016). The Effect of Different Rhizobium Strains and Organic Fertilizer Applications on Some Agricultural Characteristics of Fenugreek (Trigonella foenum-graecum L.). Yuzuncu Yil University Journal of Agricultural Sciences. 26(4): 475-483. DOI: 10.29133/ yyutbd.282730.
  34. Wojdy³o, A., Nowicka, P., Tkacz, K. and Turkiewicz, I. P. (2020). Sprouts vs. Microgreens as Novel Functional Foods: Variation of Nutritional and Phytochemical Profiles and Their In Vitro Bioactive Properties. Molecules. 25(20): 4648. DOI: 10.3390/molecules25204648.
  35. Xiao, Z., Lester, G.E., Luo, Y. And Wang, Q. (2012). Assessment of vitamin and carotenoid concentrations of emerging food products: edible microgreens. Journal of Agricultural and Food Chemistry. 60(31): 7644-7651. DOI: 10.1021/jf300459b.
  36. Xu, M.J., Dong, J.F. and Zhu, M.Y. (2005). Effects of germination conditions on ascorbic acid level and yield of soybean sprouts. Journal of the Science of Food and Agriculture. 85(6): 943-947. DOI: 10.1002/jsfa.2050.
  37. Yadav, D.K. and Hemantaranjan, A. (2017). Mitigating effects of paclobutrazol on flooding stress damage by shifting biochemical and antioxidant defense mechanisms in mungbean (Vigna radiata L.) at pre-flowering stage. Legume Research: An International Journal. 40(3): 453-461.
  38. Yilmaz, H. and Kulaz, H. (2019). The effects of plant growth promoting rhizobacteria on antioxidant activity in chickpea (Cicer arietinum L.) under salt stress. Legume Research. 42(1): 72-76. DOI: 10.18805/LR-435.
  39. Youdim, K.A., Shukitt-Hale, B. and  Joseph, J.A. (2004). Flavonoids and the brain: Interactions at the blood–brain barrier and their physiological effects on the central nervous system. Free Radical Biology and Medicine. 37: 1683-1693. DOI: 10.1016/j.freeradbiomed.2004.08.002
  40. Zhao, Y., Du, S. K., Wang, H. and Cai, M. (2014). In vitro antioxidant activity of extracts from common legumes. Food Chemistry. 152: 462-466. DOI: 10.1016/j.foodchem.2013.12.006.

Global Footprints