Loading...

​The Effect of Rhizobacteria in the Reducing drought Stress in Soybean (Glycine max L.)

DOI: 10.18805/LR-631    | Article Id: LR-631 | Page : 1172-1178
Citation :- ​The Effect of Rhizobacteria in the Reducing drought Stress in Soybean (Glycine max L.).Legume Research.2021.(44):1172-1178
E. Oral, R. Tunçtürk, M. Tunçtürk eroloral@yyu.edu.tr
Address : Department of Field Crops, Van Yuzuncu Yıl University, Faculty of Agriculture -6500/ Turkey-Van.
Submitted Date : 18-05-2021
Accepted Date : 20-07-2021

Abstract

Background: This study was carried out to determine the effects of rhizobacteria and blue green algae applications on some physiological properties of soybean (Glycina max L.) grown under water stress. 
Methods: The experiment was conducted in factorial order with 4 replications according to the randomized plot trial design. In the research, Arýsoy variety belonging to soybean (Glycine max L.) species was used. In the experiment, it was aimed to examine the effects of three different irrigation levels (100, 50 and 25%) on some physiological characteristics of soybean with a control (control (B0), two different bacteria used. In this study, strains R1 of Azospirillum lipoferum bacteria, strains numbered 98 belonging to Bacillus megaterium bacteriaein and one blue green algae (Chlorella saccharophilia) were used.
Result: According to the average data obtained, root length is 24.75 cm- 30.85 cm, seedling length 28.10-36.57 cm, root fresh weight 1.10-1.43 g, seedling wet weight 1.55-2.41 g, root dry weight 0.15-0.18 g, seedling dry weight 0.38-0.46 g, azote balance index 70.64-82.90 (dualex value), flavonol 0.375-0.398 (dualex value) and anthocyanin 0.016-0.045 (dualex value), with water restriction showed a decrease in most of these values. It has been determined that the rhizobacteria and blue-green algae have a decreasing and regulating effect on the physiological properties examined.

Keywords

​Drought stress Rhizobacteria Soybean Tolerance


References

  1. Abayomi, Y.A., Nodoye, T.O. (2009). Evaluation of cowpea genotypes for soil moisture stress tolerance under screen house conditions. African Journal of Plant Science. 3(10): 229-237. 
  2. Ashraf, M., Iram, A. (2005). Drought stress induced changes in some organic substances in nodules and other plant parts of two potential legumes  differing in salt tolerance. Flora. 200: 535-546. 
  3. Anjum, S.A., Xie, X., Wang, L., Saleem, M.F., Man, C., Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stres. Afr. J. Agric. Resarches. 6: 2026- 2032. 
  4. Araujo, F.F., Henning, A.A., Hungria, M. (2005). Phytohormones and antibiotics produced by Bacillus subtilis and  their effects  on  seed  pathogenic fungi and on soybean root development. World Journal of Microbiology and Biotechnology. 21: 1639-1645.
  5. Bartels, D., Sunkar, R. (2005). Drought and salt tolerance in plants. Crit. Rev. Plant Scien. 24: 23-58.
  6. Bagchi, S.N., Palod, A., Chauhan, V.S. (1990). Algicidal properties of a bloomforming blue-green algae, Oscillatoria sp. Journal Basic Microbiology. 30 (1): 21-29.   
  7. Bat, M., Tunçtürk, R., Tunçtürk. M. (2019). Kuraklık stresi  altındaki ekinezya  (Echinacea purpurea L.)’ da deniz yosununun büyüme parametreleri, topla fenolik ve antioksidan madde üzerine etkisi. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi. 29 (3):496-505.
  8. Birman, H. (2012). Bitkisel flavonoid bileşiklerinin biyoaktiviteleri ve muhtemel etkisinin mekanizmalari. İstanbul Tıp Fakultesi Dergisi 1:73-75.
  9. Blum, A. (2009). Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Research. 112:(2-3): 119-123.
  10. Basheer-Salimia, Aloweidat, M.Y., Al-Salimiya, M.A., Hamdan, Y.A.S., Sayara T.A.S.(2021). Comparative study of five legume species under drought conditions.Legume Research-An International Journal. (44): 712-717.
  11. Chen, D, Wang S, Xiong, B, Cao, B, Deng, X. (2015). Carbon/nitrogen imbalance associated with drought-induced leaf senescence in Sorghum bicolor. Plos one. 10(8):1-17.
  12. Dal Cortivo, C., Barion  G., Visioli, G., Mattarozzi, M., Mosca, G., Vamerali, T. (2017). Increased root growth and nitrogen accumulation in common wheat following PGPR inoculation: Assessment of plant-microbe interactions by ESEM. Agriculture, Ecosystems and Environment. 247: 396-408.  
  13. Dalal, M., Dani, R.G., Kumar, P.A. (2006). Current trends in the genetic engineering of vege table crops. Scientia Horticulturae. 107:215-225.  
  14. Denby, K., Gehring, C. (2005). Engineering drought and salinity  tolerance  in plants: lessons from genome-wide expression profiling in ariadopsis. Trends in Biotechnology. 23(11):547-552.  
  15. Düzgüneş, O., Kesici, T., Kavuncu, O., Gürbüz, F. (1987). Research and Experimental Methods. Statistical Methods-II. Ankara Üniversitesi Ziraat Fakültesi Yayınları 1: 1021-1295.
  16. Glick, B.R. (1995). The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology. 41: 109-117.
  17. Grurani, M. A., Upadhyaya, C.P., Strasser, R.J., Yu, J.W., Park S.W. (2013). Evaluation of abiotic stress tolerance in transgenic potato plants with reduced expression of PSII manganese stabilizing protein. Plant Science. 198: 7-16.
  18. Hanson, P, Yang, R.Y., Chang, L.C., Ledesma, L., Ledesma, D. (2011). Carotenoids, vitamin C, minerals and total glucosinolates in choysum (Brassica rapa cv g. parachinensis) and kailaan (B. oleracea Alboglabra group) as affected by variety and fresh and dry season production. Journal Food Compos Anal. 24: 950-62.   
  19. Heidari, M., Golpayegani, A. (2012). Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.). Journal of the Saudi Society of Agricultural Sciences. 11: 57-61.
  20. Jincya, M., Babu Rajendra Prasad, V., Jeyakumara, P., Senthila, A., Manivannan, N. (2019). Evaluation of green gram genotypes for drought tolerance by PEG (polyethylene glycol) induced drought stress at seedling stage.Legume Research-An International Journal.2021. (44): 684-691.
  21. Kiliçaslan, S.C., Yildirim, E., Ekinci, M., Kul, R. (2020). Kuraklýk stresinin fasulyede bitki geliþimi, bazı fizyolojik ve biyokimyasal özellikler üzerine etkisi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 36(2): 264-273.
  22. Lin, C.S., Wu, J.T. (2014). Tolerance of soil algae and cyanobacteria to drought stress. Journal Phycolgy. 50(1): 131-139.
  23. Malua, E., Vassilev, N. (2014). A contribution to set a legal framework for bio-fertilisers. Applied Microbiology and Biotechnology. 98: 6599-6607. 
  24. Marulanda, A, Barea, J.M., Azco´n, R. (2009). Stimulation of plant growth and drought tolerance by native microorganisms (AM Fungi and Bacteria) from dry environments: mechanisms related to bacterial effectiveness. Journal of Plant Growth Regulation. 28: 115-124.
  25. Naveed, M, Hussain, M.B., Zahir, A.Z., Mitter, B., Sessitsch, A. (2014). Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain. Plant Growth Regulation. 73: 121-131. 
  26. Osakabe, Y., Osakabe, K., Shinozaki, K., Tran, L.P. (2014). Response of Plants to Water Stress. Frontiers in Plant Science. 5: 86
  27. Samancııoğlu, A., Yıldırım, E. (2015). Bitki gelişimini teşvik eden bakteri uygulamalarının bitkilerde kuraklığa toleransı arttırmadaki etkileri, Mustafa Kemal Üniversitesi Ziraat Fakültesi Dergisi. 20(1): 72-79. 
  28. Shakir, M.A., Bano, A., Arshad, M. (2012). Rhizosphere bacteria containing ACCdeaminase conferred drought tolerance in wheat grown under semi-arid climate. Soil Environ. 31 (1): 108-112.
  29. Sharma, K.D. (2020). Impact of different rhizobial strains on physiological responses and seed yield of mungbean [Vigna radiata (L.) Wilczek] under field conditions. Legume Research-An International Journal.2021. (44): 679-683.
  30. Sarma, R.K., Saikia, R. (2004). Alleviation of drought stress in   mung bean by strain Pseudomonas aeruginosa GGRJ21 Plant Soil. 377: 111-126. 
  31. Vinocur, B., Altman, A. (2005). Recent advances in engineering plant tolerance to Abiotic stress: achievements and limitations. Current Opinion in Biotechnology. 16:123-132.  
  32. Wu, D., Wang, G. (2000). Interaction of CO2 enrichment and drought on growth, water use and yield of broad bean (Vicia faba L.). Environmental and Experimental Botany. 43: 131-139. 

Global Footprints