The Effect of Salinity on Root Architecture in Forage Pea (Pisum sativum ssp. arvense L.)

DOI: 10.18805/LR-608    | Article Id: LR-608 | Page : 407-412
Citation :- The Effect of Salinity on Root Architecture in Forage Pea (Pisum sativum ssp. arvense L.).Legume Research-An International Journal.2021.(44):407-412
S. Acikbas, M.A. Ozyazici, H. Bektas
Address : Department of Agricultural Biotechnology, Faculty of Agriculture, Siirt University, Siirt, Turkey.
Submitted Date : 4-01-2021
Accepted Date : 27-02-2021


Background: Plants face different abiotic stresses such as salinity that affect their normal development, growth and survival. Forage pea is an important legume crop for herbage production in ruminants. Its agronomy requires high levels of irrigation and fertilization. This study aimed to evaluate the effect of salinity on seedling root system development in forage pea under semi-hydroponics conditions.
Methods: Different treatment of NaCl doses (0, 50, 100, 150, 200, 250 and 300 mM) on root architecture was investigated in two different forage pea cultivars (Livioletta and Ulubatlı) with contrasting root structures under controlled conditions. The experimental design was completely randomized design with three replications and nine plants per replication.
Result: Salinity affects root and shoot development differently on these cultivars. Despite the salinity, Livioletta produced more shoot (0.71 g) and root biomass (0.30 g) compared to Ulubatlı (0.52 g and 0.25 g for Root and Shoot biomass, respectively) at 150 mM and all other salinity levels. Livioletta developed a better root system and tolerated salt to a higher dose than Ulubatlý. Understanding root system responses of forage pea cultivars may allow breeding and selecting salinity tolerant cultivars with better rooting potential.


Forage pea Root architecture Salinity Shoot length


  1. Ahmad, P., Azooz, M.M. and Prasad, M.N.V. (2013). Salt Stress in Plants. Heidelberg: Springer.
  2. Almansouri, M., Kinet, J.M. and Lutts, S. (2001). Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant and Soil. 23: 243-254.
  3. Ariel, F.D., Diet, A., Crespi, M. and Chan, R.L. (2010). The LOB-like transcription factor MtLBD1 controls Medicago truncatula root architecture under salt stress. Plant Signaling and Behavior. 5(12): 1666-1668.
  4. Ashraf, M.P.J.C. and Harris, P.J.C. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science. 166(1): 3-16.
  5. Balibrea, M.E., Dell’Amico, J., Bolarin, M.C. and Perez-Alfocea, F. (2000). Carbon partitioning and sucrose metabolism in tomato plants growing under salinity. Physiologia Plantarum. 110: 503-511.
  6. Berger, J.D., Siddique, K.H.M. and Loss, S.P. (1999). Cool season grain legumes for Mediterranean environments: The effect of environment on non protein amino acids in Vicia and Lathyrus species. Australian Journal of Agricultural Research. 50: 403-412.
  7. Ceritoglu, M., Ceritoglu, F., Erman, M. and Bektas, H. (2020). Root system variation of pulse crops at early vegetative stage. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 48(4): 2182-2197.
  8. Demirkol, G., Yılmaz, N. and Önal Aşcı, Ö. (2019). The effect of salt stress on the germination and seedling growth parameters of a selected forage pea (Pisum sativum ssp. arvense L.) genotype. KSU Journal of Agriculture and Nature. 22(3): 354-359.
  9. Egamberdieva, D., Wirth, S.J., Shurigin, V.V., Hashem, A. and Abd_Allah, E.F. (2017). Endophytic bacteria improve plant growth, symbiotic performance of chickpea (Cicer arietinum L.) and induce suppression of root rot caused by Fusarium solani under salt stress. Frontiers in Microbiology. 8: 1887.
  10. FAO. (2018). Food and Agriculture Organization of the United Nations. Access date: 06.11.2020.
  11. Fedina, I.S., Grigorova, I.D. and Georgieva, K.M. (2003). Response of barley seedlings to UV-B radiation as affected by NaCl. Journal of Plant Physiology. 160(2): 205-208.
  12. Hasan, M.A., Al-Taweel, S.K., Alamrani, H.A., Al-Naqeeb, M.A., Al-Baldawwi, M.H.K. and Hamza, J.H. (2018). Anatomical and physiological traits of broad bean (Vicia faba L.) seedling affected by salicylic acid and salt stress. Indian Journal of Agricultural Research. 52(4): 368-373.
  13. Hasanuzzaman, M., Nahar, K. and Fujita, M. (2013). Plant Response to Salt Stress and Role of Exogenous Protectants to Mitigate Salt-Induced Damages. Ecophysiology and Responses of Plants Under Salt Stress [(Eds.) P. Ahmad, M.M. Azooz and M.N.V. Prasad, M.N.V.]. Springer, New York. 25-87.
  14. Hohn, C.E. (2016). Discovery and verification of quantitative trait loci (QTLs) for seminal root traits and ınsights ınto root to shoot tradeoffs in hexaploid wheat (Triticum aestivum L.). Dissertation, UC Riverside.
  15. Julkowska, M.M., Hoefsloot, H.C.J., Mol, S., Feron, R., Boer, G-J de, Haring, M.A. and Testerink, C. (2014). Capturing Arabidopsis root architecture dynamics with ROOT-FIT reveals diversity in responses to salinity. Plant Physiology, 166(3): 1387-1402.
  16. Maksimović, I., Putnik-Delić, M., Gani, I., Marić, J. and Ilin, Ž. (2010). Growth, ion composition and stomatal conductance of peas exposed to salinity. Central European Journal of Biology. 5(5): 682-691.
  17. Mann, A., Kaur, G., Kumar, A., Sanwal, S.K., Singh, J. and Sharma, P.C. (2019). Physiological response of chickpea (Cicer arietinum L.) at early seedling stage under salt stress conditions. Legume Research - An International Journal. 42(5): 625-632.
  18. Mansour, M.M.F. (2000). Nitrogen containing compounds and adaptation of plants to salinity stress. Biologia Plantarum. 43(4): 491-500.
  19. McMaster, G.S. and Wilhelm, W.W. (2003). Phenological responses of wheat and barley to water and temperature: improving models. Journal of Agricultural Science. 141: 129-147.
  20. McPhee, K. (2005). Variation for seedling root architecture in the core collection of pea germplasm. Crop Science. 45(5): 1758-1763.
  21. Merrill, S.D., Tanaka, D.L. and Hanson, J.D. (2002). Root length growth of eight crop species in haplustoll soils. Soil Science Society of America Journal. 66(3): 913.
  22. Okçu, G., Kaya, M.D. and Atak, M. (2005). Effects of salt and drought stresses on germination and seedling growth of pea (Pisum sativum L.). Turkish Journal of Agriculture and Forestry. 29: 237-242.
  23. Önal Aşçı, Ö. and Eriş, A. (2019). The effect of different salt and jasmonic acid concentrations on plant growth of forage pea (Pisum arvense). Academic Journal of Agriculture. 8(1): 89-92.
  24. Önal Aşçı, Ö. and Üney, H. (2016). The effect of different salt concentrations on germination and plant growth of hungarian vetch (Vicia pannonica Crantz). Academic Journal of Agriculture. 5(1): 29-34.
  25. Önal Aşçı, Ö. and Zambi, H. (2020). Effect of different NaCl concentrations on plant growth in some cultivars and genotypes of pea. Anadolu Journal of Agricultural Sciences. 35(3): 274-284.
  26. Özkorkmaz, F. and Yılmaz, N. (2017). Determination of the effects of different salt concentrations on germination in bean (Phaseolus vulgaris L.) and cowpea (Vigna unguiculata L.). Ordu University Journal of Science and Tecnology. 7(2): 196-200.
  27. Rewald, B., Shelef, O., Ephrath, J.E. and Rachmilevitch, S. (2013). Adaptive plasticity of salt-stressed root systems. In: Ecophysiology and Responses of Plants under Salt Stress. [Ahmad, P., Azooz, M.M., Prasad, M.N.V. (Eds)]. Springer, USA. pp. 169-202.
  28. Rueden, C.T., Schindelin, J., Hiner, M.C., DeZonia, B.E., Walter, A.E., Arena, E.T. and Eliceiri, K.W. (2017). ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics. 18(1): 529. 
  29. Sadeghian, S.Y. and Yavari, N. (2004) Effect of water-deficit stress on germination and early seedling growth in sugar beet. Journal of Agronomy and Crop Science. 190: 198-144.
  30. Seydoşoğlu, S. (2013). Determination of yield and yield components of some forage pea (Pisum sativum L.) genotypes in Diyarbakır ecological conditions. Turkish Journal of Nature and Science. 2(2): 21-27.
  31. Sharma, S., Demason, D.A., Ehdaie, B., Lukaszewski, A.J. and Waines, J.G. (2010). Dosage effect of the short arm of chromosome 1 of rye on root morphology and anatomy in bread wheat. Journal of Experimental Botany. 61(10): 2623-2633.
  32. Sreenivasulu, N., Grimm, B., Wobus, U. and Weschke, W. (2000). Differential response of antioxidant compounds to salinity stress in salt tolerant and salt sensitive seedlings of foxtail millet (Setaria italica). Physiologia Plantarum. 109(4): 435-442.
  33. Steel, R.G.D., Torrie, J.H. and Dickey, D.A. (1997). Principles and Procedures of Statistics: a Biometrical Approach, McGraw-Hill, New York.
  34. Talukdar, D. (2011). Morpho-physiological responses of grass pea (Lathyrus sativus L.) genotypes to salt stress at germination seedling stages. Legume Research-An International Journal. 34(4): 232-241.
  35. Uzun, A., Gun, H. and Acikgoz, E. (2012). Yield and quality characteristics of some pea (Pisum sativum L.) varieties harvested at different growing stages. Journal of Agricultural Faculty of Uludag University. 26(1): 27-38.
  36. Variety Registration and Seed Certification Center (TTSMM). (2018). Republic of Turkey Ministry of Agriculture And Forestry. Forage Pea-2 Registration Report. 
  37. Zhu, J.M., Kaeppler, S.M. and Lynch, J.P. (2005). Mapping of QTLs for lateral root branching and length in maize (Zea mays L.) under differential phosphorus supply. Theoretical and Applied Genetics. 111(4): 688-695.
  38. Zolla, G., Heimer, Y.M. and Barak, S. (2010). Mild salinity stimulates a stress induced morphogenic response in Arabidopsis thaliana roots. Journal of Experimental Botany. 61(1): 211-224.

Global Footprints