Assessment of Somaclonal Variations in Embryo-derived Axillary Shoots of Chickpea using Molecular Markers

DOI: 10.18805/LR-580    | Article Id: LR-580 | Page : 508-514
Citation :- Assessment of Somaclonal Variations in Embryo-derived Axillary Shoots of Chickpea using Molecular Markers.Legume Research-An International Journal.2021.(44):508-514
S.S. Alghamdi, H.M. Migdadi, M.A. Khan, E.H. El-Harty, Y.H. Dewir H.MIGDADI@GMAIL.COM
Address : Plant Production Department, P.O. Box 2460, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
Submitted Date : 25-07-2020
Accepted Date : 22-11-2020

Abstract

Background: Somaclonal variation is considered as a source of genetic variation for crop improvement. It has been investigated using cytological, biochemical and molecular techniques.
Methods: Genetic stability in the embryo-derived axillary shoots of 4 chickpea genotypes was assessed using eight inter-simple sequence repeat (ISSR) and 19 random amplified polymorphic DNA (RAPD) primers. 
Result: RAPD primers produced 94 and ISSR primers produced 38 distinct and scorable alleles, with an average of 4.9 alleles for RAPD and 4.75 for ISSR primers. The polymorphic information content (PIC) ranged from 0.36 to 0.90 for RAPD and from 0.50 to 0.87 for ISSR. ISSR recognized a 90%, but RAPD recognized 82% similarity value. No absolute similarity value was between the mother plant and the regenerated shoots for the overall genotypes. At a 90% similarity value, 15 out of the 20 regenerated shoots from ‘Giza 88’ group with their mother plant using ISSR markers; however, 11 regenerated shoots grouped with their mother plant in one central cluster for ‘Giza 4’ using RAPD markers. The observed variations in the total number of polymorphic RAPD and ISSR bands and the number of bands specific to the mother and regenerated shoots, detected intra-clonal variation and genetic instability seem to be genotype-dependent.

Keywords

Axillary shoots proliferation Genetic fidelity Intra-clonal variation Molecular makers

References

  1. Aasim, M., Day, S., Rezael, F., Hajyzadeh, M., Mahmud, S.T. and Ozcan, S. (2011). In vitro shoot regeneration from preconditioned explants of chickpea (Cicer arietinum L.) cv. Gokce. African Journal of Biotechnology. 10(11): 2020-2023.
  2. Anderson, J.A., Churchill, G., Autrique, J., Tanksley, S. and Sorrells, M. (1993). Optimizing parental selection for genetic linkage maps. Genome. 36: 181-186. 
  3. Bello-Bello, J. J., Iglesias-Andreu, L. G., Avilés-Vinas, S. A., Gómez-Uc, E., Canto-Flick, A. and Santana-Buzzy, N. (2014). Somaclonal variation in habanero pepper (Capsicum chinense Jacq.) as assessed ISSR molecular markers. HortScience. 49(4): 481-485.
  4. Chhajer, S. and Kalia, R.K. (2016). Evaluation of genetic homogeneity of in vitro-raised plants of Tecomella undulata (Sm.) Seem. using molecular markers. Tree Genetics and Genomes. 12: 100.
  5. Dewir, Y.H., Murthy, H.N., Ammar, M.H., Alghamdi, S.S., Al-Suhaibani, N.A., Alsadon, A.A. and Paek, K.Y. (2016). In vitro rooting of leguminous plants: difficulties, alternatives and strategies for improvement. Horticulture, Environment and Biotechnology. 57(4): 311-322.
  6. Dewir, Y.H., Nurmansyah, Naidoo, Y., Teixeira, da. and Silva, J.A. (2018). Thidiazuron-induced abnormalities in plant tissue cultures. Plant Cell Reports. 37: 1451-1470.
  7. El-Awady, M.A., Awad, N.S. and El-Tarras, A. (2015). Evaluation of the anticancer activities of pomegranate (Punica granatum) and harmal (Rhazya stricta) plants grown in Saudi Arabia. International Journal of Current Microbiology and Applied Sciences. 4: 1158-1167.
  8. Faisal, M., Alatar, A.A., El-Sheikh, M.A., Abdel-Salam, E.M. and Qahtan, A.A. (2018). Thidiazuron induced in vitro morphogenesis for sustainable supply of genetically true quality plantlets of Brahmi. Industrial Crops and Products. 118: 173-179.
  9. Goto, S., Thakur, R.C. and Ishii, K. (1998). Determination of genetic stability in long-term micropropagated shoots of Pinus thunbergii Parl. using RAPD markers. Plant Cell Reports. 18: 193-197.
  10. Hammer, Ø., Harper, D.A. and Ryan, P.D. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica. 4: 9.
  11. Huang, W.J., Ning, G.G., Liu, G.F. and Bao, M.Z. (2009). Determination of genetic stability of long-term micropropagated plantlets of Platanus acerifolia using ISSR markers. Biologia Plantarum. 53: 159-163. 
  12. Jaccard, P. (1908). Nouvelles recherches sur la distribution florale. Bulletin de la Socieìteì Vaudoise des Sciences Naturelles. 44: 223-270.
  13. Kadiri, A., Halfaoui, Y., Bouabdallah, L. and Ighilhariz, Z. (2014). Chickpea (Cicer arietinum L.) in vitro micropropagation. Turkish Journal of Agricultural and Natural Sciences. 1304-1309.
  14. Kumar, N., Modi, A.R., Singh, A.S., Gajera, B.B., Patel, A.R., Patel, M.P. and Subhash, N. (2010). Assessment of genetic fidelity of micropropagated date palm (Phoenix dactylifera L.) plants by RAPD and ISSR markers assay. Physiology and Molecular Biology of Plants. 16(2): 207-213.
  15. Larkin, P.J. and Scowcroft, W.R. (1981). Somaclonal variation a novel source of variability from cell cultures for plant improvement. Theoretical and Applied Genetics. 60: 197-214.
  16. Martins, M., Sarmento, D. and Oliveira, M.M. (2005). Genetic stability of micropropagated almond plantlets as assessed by RAPD and ISSR markers. Plant Cell Rep. 23: 492-496.
  17. Modgil, M., Mahajan, K., Chakrabarti, S., Sharma, D. and Sobti, R. (2005). Molecular analysis of genetic stability in micropropagated apple rootstock MM106. Scientia Horticulturae. 104: 151-160.
  18. Mukhopadhyay, M., Mondal, T.K. and Chand, P.K. (2016). Biotechnological advances in tea [Camellia sinensis (L.) O. Kuntze]: a review. Plant Cell Reports. 35(2): 255-287. 
  19. Rohela, G.K., Jogam P., Shabnam A.A., Shukla P., Abbagani, S. and Ghosh, M.K. (2018). In vitro regeneration and assessment of genetic fidelity of acclimated plantlets by using ISSR markers in PPR-1 (Morus sp.): An economically important plant. Scientia Horticulturae. 241: 313-321.
  20. Roy, P.K., Lodha, M.L. and Mehta, S.L. (2001). In vitro regeneration from internodal explants and somaclonal variation in chickpea (Cicer arietinum L). Journal of Plant Biochemistry and Biotechnology. 10: 107-112.
  21. Saker, M.M., Bekheet, S.A., Taha, H.S., Fahmy, A.S. and Moursy, H.A. (2000). Detection of somaclonal variations in tissue culture-derived date palm plants using isoenzyme analysis and RAPD fingerprints. Biologia Plantarum. 43: 347-351. 
  22. Sheidai, M., Aminpoo H., Noormohammadi Z. and Farahani, F. (2008). RAPD analysis of somaclonal variation in banana (Musa acuminate L.) cultivar Valery. Acta Biologica Szegediensis. 52(2): 307-311.
  23. Ugandhar, T., Venkateshwarlu, M., Sammailah, D. and Reddy, J. (2012). Rapid in vitro micro propagation of chick pea (Cicer arietinum L.) from shoot tip and cotyledonary node explants. Journal of Biotechnology and Biomaterials. 2: 1-6.
  24. Varshney, R.K., Thudi, M., Roorkiwal, M., He, W., Upadhyaya, H.D., Yang, W., Bajaj, P., Cubry, P., Rathore, A., Jian, J. and Doddamani, D. (2019). Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits. Nature Genetics. 51: 857.
  25. Venkatachalam, L., Sreedhar, R. and Bhagyalakshmi, N. (2007). Genetic analyses of micropropagated and regenerated plantlets of banana as assessed by RAPD and ISSR markers. In vitro Cellular and Developmental Biology-Plant. 43: 267-274.
  26. Yuan, X., Dai, Z., Wang, X. and Zhao, B. (2009). Assessment of genetic stability in tissue-cultured products and seedlings of Saussurea involucrata by RAPD and ISSR markers. Biotechnology Letters. 31: 1279-1287.

Global Footprints