Legume Research

  • Chief EditorJ. S. Sandhu

  • Print ISSN 0250-5371

  • Online ISSN 0976-0571

  • NAAS Rating 6.67

  • SJR 0.391

  • Impact Factor 0.8 (2023)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Legume Research, volume 44 issue 3 (march 2021) : 287-291

Cross-species Amplification of Common Bean (Phaseolus vulgaris) EST-SSRs within Hyacinth Bean, Pea and Soybean

Yutao Huang, Xin Liu, Dongdong Cao, Guang Chen, Sujuan Li, Gangjun Wang, Jian Wang, Shengchun Xu
1Zhejiang Academy of Agricultural Science, 298 Deshengzhong Road, Hangzhou, China.
  • Submitted01-07-2020|

  • Accepted28-08-2020|

  • First Online 19-12-2020|

  • doi 10.18805/LR-574

Cite article:- Huang Yutao, Liu Xin, Cao Dongdong, Chen Guang, Li Sujuan, Wang Gangjun, Wang Jian, Xu Shengchun (2020). Cross-species Amplification of Common Bean (Phaseolus vulgaris) EST-SSRs within Hyacinth Bean, Pea and Soybean. Legume Research. 44(3): 287-291. doi: 10.18805/LR-574.
Background: The emerging expressed sequence tag-derived simple sequence repeats (EST-SSRs) offer an important approach to investigate plant genetic diversity. 
Methods: A total of seventy common bean polymorphic EST-SSRs were utilized for assessing genetic diversity among 19 hyacinth, 20 pea and 21 soybean accessions, respectively. The genetic statistics and principal coordinates analysis (PCoA) were conducted by GenAlEx 6.5. 
Result: The transferability rates of common bean EST-SSRs in hyacinth, pea and soybean were 27.1%, 20.0% and 21.4%. And the ratios of polymorphic SSR markers in these legumes were 42.1%, 85.71% and 100.0%, respectively. The hyacinth, pea and soybean accessions could be assigned to three distinct clusters for the germplasm types greatly depending on the geographic distributions. The present results revealed that the common bean EST-SSRs are highly transferable to hyacinth bean, pea and soybean. Moreover, these transferable markers would provide a set of inexpensive and effective tools for future research on molecular breeding, taxonomy and comparative mapping.
  1. Anderson, J.A., Churchill, G.A., Autrique, J.E., Tanksley, S.D., Sorrells, M.E. (1993). Optimizing parental selection for genetic linkage maps. Genome. 36: 181-186.
  2. Dutta, S., Kumawat, G., Singh, B.P., Gupta, D.K., Singh, S., Dogra, V., Gaikwad, K., Sharma, T.R., Raje, R.S., Bandhopadhya, T.K., Datta, S., Singh, M.N., Bashasab, F., Kulwal, P., Wanjari, K.B., Varshney, R.K., Cook, D.R., Singh, N.K. (2011). Development of genic-SSR markers by deep transcriptome sequencing in pigeonpea Cajanus cajan (L.) Millspaugh. BMC Plant Biology. 11: 17.
  3. Ellis, J.R., Burke, J.M. (2007). EST-SSRs as a resource for population genetic analyses. Heredity 99: 125-132.
  4. Galvao, K.S.C., Ramos, H.C.C., Santos, P.H.A.D., Entringer, G.C., Vettorazzi, J.C.F., Pereira, M.G. (2015). Functional molecular markers (EST-SSR) in the full-sib reciprocal recurrent selection program of maize (Zea mays L.). Genetics Molecular Research. 14: 7344-7355.
  5. Gong, Y.M., Xu, S.C., Mao, W.H., Hu, Q.Z., Zhang, G.W., Ding, J., Li, Y.D. (2010). Developing new SSR markers from ESTs of pea (Pisum sativum L.). Journal of Zhejiang University-Science B. 11: 702-707.
  6. Gong, Y., Xu, S., Mao, W., Li, Z. (2011). Transferable analysis of pea EST-SSRs on faba bean and its application. Journal of Zhejiang University (Agriculture and Life Sciences). 37: 479-484.
  7. Graham, P.H., Vance, C.P. (2003). Legumes: Importance and constraints to greater use. Plant Physiology. 131: 872-    877.
  8. He, R., Fan, J., Ping, L., Wen, X., Di, J. (2015). Transferability of soybean gemonic-SSR and EST-SSR markers in Astragalus. Molecular Plant Breeding. 13: 994-998.
  9. Iqbal, A., Khalil, I.A., Ateeq, N., Khan, M.S. (2006). Nutritional quality of important food legumes. Food Chemistry. 97: 331-335.
  10. Kour G, Bakshi P, Wali V.K., Jastotia, A. (2011). Role of molecular makrers in some perennial crops-brief review. Agricultural Reviews. 32(4): 256 - 267.
  11. Li, L., Wang, J., Guo, Y., Jiang, F., Xu, Y., Wang, Y., Pan, H., Han, G., Li, R., Li, S. (2008). Development of SSR markers from ESTs of gramineous species and their chromosome location on wheat. Progress in Natural Science-Materials International. 18: 1485-1490.
  12. Ma, K.H., Kim, N.S., Lee, G.A., Lee,S.Y., Lee, J.K., Yi, J.Y., Park, Y.J., Kim, T.S., Gwag, J.G., Kwon, S.J. (2009). Development of SSR markers for studies of diversity in the genus Fagopyrum. Theoretical and Applied Genetics. 119: 1247-1254.
  13. Pan, L., Huang, T., Yang, Z., Tang, L., Cheng, Y., Wang, J., Ma. X., Zhang, X. (2018). EST-SSR marker characterization based on RNA-sequencing of Lolium multiflorum and cross transferability to related species. Molecular Breeding. 38: 80.
  14. Roy, J.K., Balyan, H.S., Prasad, M., Gupta, P.K. (2002). Use of SAMPL for a study of DNA polymorphism, genetic diversity and possible gene tagging in bread wheat. Theoretical and Applied Genetics. 104: 465-472.
  15. Singh, M.S. (2005). Effect of rhizobium, FYM and chemical fertilizers on legume crops and nutrient status of soil - A Review. Agricultural Reviews. 26(4): 309-312.
  16. Suman S, Rani B, Sharma V.K., Kumar H, Shahi V.K. (2019). SSR marker based profiling and diversity analysis of mungbean [Vigna radiata (L.) Wilczek] genotypes. Legume Research. 42(5): 585-594.
  17. Sun, M., Zhang, C., Zhang, X., Fan, Y., Fu, K., Wu, W., Bai, S., Zhang, J., Peng, Y., Huang, L., Yan, Y., Ma, X. (2017). AFLP assessment of genetic variability and relationships in an Asian wild germplasm collection of Dactylis glomerata L. Comptes Rendus Biologies. 340: 145-155.
  18. Teshome, A., Bryngelsson, T., Dagne, K., Geleta, M. (2015). Assessment of genetic diversity in Ethiopian field pea (Pisum sativum L.) accessions with newly developed EST-SSR markers. BMC Genetics. 16(1): 102.
  19. Thiel, T., Michalek, W., Varshney, R.K., Graner, A. (2003). Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theoretical and Applied Genetics. 106: 411-422.
  20. Wang, J.Y., Song, X.M., Li, Y., Hou, X.L. (2013). In-silico detection of EST-SSR markers in three Brassica species and transferability in B. rapa. Journal of Horticultural Science and Biotechnology. 88: 135-140.
  21. Wang, Z.Y., Li, J., Luo, Z.X., Huang, L.F., Chen, X.L., Fang, B.P., Li, Y.J., Chen, J.Y., Zhang, X.J. (2011). Characterization and development of EST-derived SSR markers in cultivated sweetpotato (Ipomoea batatas). BMC Plant Biology. 11(1): 139.
  22. Xu, S., Wang, G., Mao, W., Hu, Q., Liu, N., Ye, L., Gong, Y. (2014). Genetic diversity and population structure of common bean (Phaseolus vulgaris) landraces from China revealed by a new set of EST-SSR markers. Biochemical Systematics Ecology. 57: 250-256.
  23. Zhang, G., Xu, S., Mao, W., Gong, Y., Hu, Q. (2013). Development of EST-SSR markers to study genetic diversity in hyacinth bean (Lablab purpureus L.). Plant Omics. 6: 295-301.
  24. Zhang, L.Y., Ravel, C., Bernard, M., Balfourier, F., Leroy, P., Feuillet, C., Sourdille, P. (2006). Transferable bread wheat EST-SSRs can be useful for phylogenetic studies among the Triticeae species. Theoretical and Applied Genetics. 113: 407-418. 

Editorial Board

View all (0)