Legume Research

  • Chief EditorJ. S. Sandhu

  • Print ISSN 0250-5371

  • Online ISSN 0976-0571

  • NAAS Rating 6.80

  • SJR 0.391

  • Impact Factor 0.8 (2023)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Legume Research, volume 44 issue 1 (january 2021) : 81-87

Leaf Nitrogen and Phosphorus Stoichiometry are Closely Linked with Mycorrhizal Type Traits of Legume Species

Z.Y. Shi, S.X. Xu, M. Yang, M.G. Zhang, S.C. Lu, H.Q. Chang, X.G. Wang, X.N. Chen
1College of Agricultural, Henan University of Science and Technology, Luoyang 471003, Henan province, China.
  • Submitted17-01-2020|

  • Accepted18-03-2020|

  • First Online 15-07-2020|

  • doi 10.18805/LR-550

Cite article:- Shi Z.Y., Xu S.X., Yang M., Zhang M.G., Lu S.C., Chang H.Q., Wang X.G., Chen X.N. (2020). Leaf Nitrogen and Phosphorus Stoichiometry are Closely Linked with Mycorrhizal Type Traits of Legume Species. Legume Research. 44(1): 81-87. doi: 10.18805/LR-550.
Arbuscular mycorrhizas (AM) are the most widely symbiosis in terrestrial ecosystem. Leaf N and P are the most important plant functional traits due to their influence on biogeochemical cycling. However, as the notable nitrogen (N) fixing plants, the variations of leaf N, P and N:P and their relationship among mycorrhizal types had been hardly studied based on functional groups. In this study, we studied the leaf N, P and N:P and their relationship between AM and other mycorrhizal types (others) among different functional groups or climate zones. The results indicated that AM improve significantly leaf N and P, while reduce N:P comparing to others. However, the influences of AM and others on leaf N, P and N:P changed with plant functional groups or climate zone. The relationships between leaf N and P, between N and N:P and between P and N:P also exhibit great variation between AM and Others.
  1. Averill, C., Bhatnagar J.M.; Dietze, M.C., Pearse, W.D., Kivlin S.N. (2019). Global imprint of mycorrhizal fungi on whole-plant nutrient economics. Proceedings of the National Academy of Sciences of the United States of America. 116: 23163-23168.
  2. Averill, C., Turner, B.L., Finzi, A.C. (2014). Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature. 505: 543-545.
  3. Brundrett, M.C. (2017). Global diversity and importance of mycorrhizal and nonmycorrhizal plants. In: Biogeography of Mycorrhizal Symbiosis. [Tedersoo, L. (Edn.)], Springer, Cham, pp. 533-556.
  4. Brzostek, E.R., Rebel, K.T., Smith, K.R., Phillips, R.P. (2017). Integrating mycorrhizas into global scale models. In: Johnson, N.C., Gehring, C., Jansa, J. Mycorrhizal Mediation of Soil. Elsevier Inc., pp 479-499.
  5. Castellanos, A.E., Llano-Sotelo, J.M., Machado-Encinas, L.I., López-Pinã, J.E., Romo-Leon, J.R. (2018). Sardans J. Pen˜uelas J. Foliar C, N and P stoichiometry characterize successful plant ecological strategies in the Sonoran Desert. Plant Ecology. 219: 775-788.
  6. Cornelissen, J.H.C., Aerts, R., Cerabolini, B., Werger, M., Heijden, M.G.A.V.D. (2001) Carbon cycling traits of plant species are linked with mycorrhizal strategy. Oecologia. 129: 611-619.
  7. Cosme, M., Fern_andez, I., Heijden, M.G.A.V.D., Pieterse, C.M.J. (2018). Non-mycorrhizal plants: the exceptions that prove the rule. Trends Plant Science. 23: 577-587.
  8. Guo, Y., Yang, X., Christian, S., Jiang, Y., Tang, Z. (2017). Legume shrubs are more nitrogen-homeostatic than non-legume shrubs. Frontier in Plant Science. 8: 1662. 
  9. Harley, J.L., Harleye, L. (1990). A check-list of mycorrhiza in the british flora-Second addenda and errata. New Phytologist. 115: 699-711.
  10. Heijden, M.G.A.V.D., Martin, F.M., Selosse, M.A., Sanders, I.R. (2015). Mycorrhizal ecology and evolution: the past, the present and the future. New Phytologist. 205: 1406-1423.
  11. Jespersen, J.R.P., Johansen, J.L., Pereira, C.M.R., Bruun, H.H., Rosendahl, S., Kjøller, R., López-García, Á. (2019). Mycorrhizal features and leaf traits covary at the community level during primary succession. Fungal Ecology. 40: 4-11.
  12. Jiang, J., Wang, Y.P., Yang, Y., Yu, M., Wang, C., Yan, J. (2019). Interactive effects of nitrogen and phosphorus additions on plant growth vary with ecosystem type. Plant and Soil. 440: 523-537.
  13. Kalkal, M., Kumar, K., Waldia R.S., Dudeja S.S. (2018). Interaction of mesorhizobia, vesicular arbuscular mycorrhiza and different chickpea (Cicer arietinum L.) genotypes for nitrogen fixing and yield attributing traits. Legume Research. 41: 606-616.
  14. Kerkhoff, A.J., Fagan, W.F., Elser, J.J., Enquist, B. J. (2006). Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. American Naturalist. 168: 103-122.
  15. Koele, N., Dickie, I.A., Jacek, O., Richardson, S.J., Reich, P.B. (2012). No globally consistent effect of ectomycorrhizal status on foliar traits. New Phytologist. 196: 845-852.
  16. Lebauer, D.S., Treseder, K.K. (2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology. 89: 371-379.
  17. Ma, Z., Guo, D., Xu, X., Lu, M., Bardgett, R.D., Eissenstat, D.M., Mccormack, M.L., Hedin, L.O. (2018). Evolutionary history resolves global organization of root functional traits. Nature. 555: 48-56.
  18. Reich, P.B. (2014). The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. Journal of Ecology. 102: 275-301.
  19. Seyahjani, E.A., Yarnia, M., Farahvash, F., Benam, M.B.K., Rahmani, H.A. (2020). Influence of Rhizobium, Pseudomonas and Mycorrhiza on Some Physiological Traits of Red Beans (Phaseolus vulgaris L.) under different irrigation conditions. Legume Research. 43: 81-86.
  20. Shi, Z., Chen, Y., Hou, X., Gao S., Wang, F. (2013). Arbuscular mycorrhizal fungi associated with tree peony in 3 geographic locations in China. Turkish Journal of Agriculture and Forestry. 37: 726-733.
  21. Shi, Z., Li, K., Zhu, X., Wang, F. (2020a). The worldwide leaf economic spectrum traits are closely linked with mycorrhizal traits. Fungal Ecology. 43: 100877.
  22. Shi, Z., Wang, F., Liu, Y. (2012). Response of soil respiration under different mycorrhizal strategies to precipitation and temperature. Journal of Soil Science and Plant Nutrition. 12: 411-420.
  23. Shi, Z.Y., Xu, S.X., Lu, S.C., Yang, M., Zhang, M.G., Li, Y.J., Wang, X.G., Chen, X.N. (2020b). Variation in leaf nitrogen and phosphorus stoichiometry in different functional groups of legumes. Legume Research. Doi: 10.18805/LR-502. 
  24. Shi, Z.Y., Zhang, X.L., Xu, S.X., Lan, Z.J., Li, K., Wang, Y.M., Wang, F.Y., Chen, Y.L. (2017). Mycorrhizal relationship in lupines: A review. Legume Research. 40(6): 965-973.
  25. Smith, S.E., Read, D.J. (2008). Mycorrhizal Symbiosis (3rd Edn.). Academic Press, London.
  26. Tian, D., Kattge, J., Chen, Y., Han, W., Luo, Y., He, J., Hu, H., Tang, Z., Ma, S., Yan, Z., Lin, Q., Schmid, B., Fang, J. (2019). A global database of paired leaf nitrogen and phosphorus concentrations of terrestrial plants. Ecology. 100: e02812.
  27. Vitousek, P.M., Porder, S., Houlton, B.Z., Chadwick, O.A. (2010). Terrestrial phosphorus limitation: mechanisms, implications and nitrogen - phosphorus interactions. Ecological Applications. 20: 5-15.
  28. Wang, B., Qiu, Y.L. (2006). Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza. 16: 299-363.

Editorial Board

View all (0)