Comparative Analysis of Defence Response of Soybean by Seed Soaking in Gibberellic Acid to Salinity

DOI: 10.18805/LR-544    | Article Id: LR-544 | Page : 365-369
Citation :- Comparative Analysis of Defence Response of Soybean by Seed Soaking in Gibberellic Acid to Salinity.Legume Research-An International Journal.2020.(43):365-369
Burcu Seckin Dinler, Volkan Gul burcu_sec@hotmail.com
Address : Sinop University, Department of Biology, Faculty of Arts and Sciences, Sinop, 57000, Turkey.
Submitted Date : 24-12-2019
Accepted Date : 30-03-2020

Abstract

The present study was conducted to determine the effects of gibberellic acid (GA3) presoaking of soybean (Glycine max L.) seeds on the biomass yield, regulation of reactive oxygen species and some antioxidant enzyme activities in radicle, hypocotyl and cotyledons under salinity. Within this scope, the seeds were subjected to priming with 150 ppm GA3 for 6 h at room temperature. Then, 150 mM NaCl was added in a group and the control was not primed with GA3. The results clearly revealed that salt stress caused a slight induction of biomass yield of radicle and hypocotyl, photosynthetic pigments in cotyledon, reactive oxygen species content in all organs. Moreover, GA3 pretreatment alleviated salt-induced oxidative damage by maintaining superoxide dismutase, ascorbate peroxidase and glutathione reductase enzyme activities in soybean plants. This study firstly elucidates the effects of GA3 priming on the comparative response mechanisms to salinity with different organs of soybean plants. 

Keywords

Gibberellic acid Reactive oxygen species Salinity Soybean

References

  1. Ahmad, P. (2010). Growth and antioxidant responses in mustard (Brassica juncea L.) plants subjected to combined effect of gibberellic acid and salinity. Archives of Agronomy and Soil Science. 56(5): 575-588. 
  2. Al Mahmud, J., Biswas, P. K., Nahar, K., Fujita, M., Hasanuzzaman, M. (2019). Exogenous application of gibberellic acid mitigates drought-induced damage in spring wheat. Acta Agrobotanica. 72(2).
  3. Amor, N., Jimenez, A., Boudabbous, M., Sevilla, F., Abdelly, C. (2019). Implication of peroxisomes and mitochondria in the halophyte Cakile maritima tolerance to salinity stress. Biologia Plantarum. 63: 113-121.
  4. Bai, X., Dai, L., Sun, H., Chen, M., Sun, Y. (2019). Effects of moderate soil salinity on osmotic adjustment and energy strategy in soybean under drought stress. Plant Physiology and Biochemistry. 139: 307-313.
  5. Beauchamp, CO, Fridovich I. (1973). Isozymes of superoxide dismutase from wheat germ. (BBA)-Protein Structure. 317: 50-64.
  6. Bradford, M.M. (1976). A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of the protein-dye binding. Analytical Biochemistry. 72: 248-254.
  7. Bohm, W. (1979). Methods of studying root systems. Springer, Berlin Heidelberg. 95-114.
  8. Chakrabarti, N. and Mukherji, S. (2003). Effect of phytohormone pretreatment on nitrogen metabolism in Vigna radiata under salt stress. Biologia Plantarum. 46(1): 63-66.
  9. Chauhan, A., AbuAmarah, B. A., Kumar, A., Verma, J. S., Ghramh, H. A., Khan, K. A., Ansari, M. J. (2019). Influence of gibberellic acid and different salt concentrations on germination percentage and physiological parameters of oat cultivars. Saudi Journal of Biological Science. 26(6):1298-1304.
  10. Foyer, C.H., Halliwell, B. (1976). The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta. 133(1): 21-25.
  11. Gomez, J. M., Jimenez, A., Olmos, E. and Sevilla, F. (2004). Location and effects of long term NaCl stress on superoxide dismutase and ascorbate peroxidase isoenzymes of pea (Pisum sativum cv. Puget) chloroplasts. Journal of Experimental Botany. 55(394): 119-130.
  12. Khan, F. (2018). Salinity stress phenotyping for soybean (Glycine max L.) for Middle East Asia, Legume Research. 41(4): 551-556. 
  13. Leite, V. M., Rosolem, C. A. and Rodrigues, J. D. (2003). Gibberellin and cytokinin effects on soybean growth. Scientia Agricola. 60(3): 537-541.
  14. Li, Z., Lu, G. Y., Zhang, X. K., Zou, C. S., Cheng, Y. and Zheng, P. Y. (2010). Improving drought tolerance of germinating seeds by exogenous application of gibberellic acid (GA3) in rapeseed (Brassica napus L.). Seed Science and Technology. 38(2): 432-440.
  15. Jiao, X., Zhi, W., Liu, G., Zhu, G., Feng, G., Eltyb Ahmed Nimir, N. and Zhou, G. (2019). Responses of Foreign GA3 Application on Seedling Growth of Castor Bean (Ricinus communis L.) under Salinity Stress Conditions. Agronomy. 9(6): 274.
  16. Lichtenthaler, H.K., Wellburn, A.R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. 591-592.
  17. Madhava, R, KV, Sresty T.V. (2000). Antioxidative parameters in the seedlings of pigeonpea [Cajanus cajan (L.) millspaugh] in response to Zn and Ni stresses. Plant Science. 157: 113-128.
  18. Maggio, A., Barbieri, G., Raimondi, G., De Pascale, S. (2010). Contrasting effects of GA3 treatments on tomato plants exposed to increasing salinity. Journal of Plant Growth Regulation. 29(1): 63-72.
  19. Miladinov, I., Maksimovic, S., Baleseviæ-Tubic, V., Djukic, P., Canak, J., Miladinovic and Djordjevic V. (2019). Priming seed mitigates the effects of saline stress in soybean seedlings. Legume Research. DOI:https://arccjournals.com/journal/legume-research-an-international-journal/LR-469 1-5.
  20. Munns, R., Gilliham, M. (2015). Salinity tolerance of crops–what is the cost? New Phytologist. 208(3): 668-673.
  21. Nakano, Y., Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell and Physiology. 22: 867-880.
  22. Ruffino, A. M. C., Rosa, M., Hilal, M., González, J. A. and Prado, F. E. (2010). The role of cotyledon metabolism in the establishment of quinoa (Chenopodium quinoa) seedlings growing under salinity. Plant and Soil. 326 (1-2): 213-224.
  23. Saeidi-Sar, S., Abbaspour, H., Afshari, H. and Yaghoobi, S. R. (2013). Effects of ascorbic acid and gibberellin A3 on alleviation of salt stress in common bean (Phaseolus vulgaris L.) seedlings. Acta Physiologia Plantarum. 35(3): 667-677.
  24. Sofy, M.R. (2016). Effect of Gibberellic Acid, Paclobutrazol and Zinc on Growth, Physiological Attributes and the Antioxidant Defense System of Soybean (Glycine max) under Salinity Stress. International Journal of Plant Research. 6 (3): 64-87.
  25. Srivastava, A. K., Srivastava, S., Lokhande, V. H., D’Souza, S. F. and Suprasanna, P. (2015). Salt stress reveals differential antioxidant and energetics responses in glycophyte (Brassica juncea L.) and halophyte (Sesuvium portulacastrum L.). Frontiers in Environmental Science. 3: 19.
  26. Velikova, V., Yordanov, I., Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants protective roles of exogenous polyamines. Plant Science. 151: 59-66.
  27. Verma, S. and Mishra, S. N. (2005). Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense system. Journal of Plant Physiology. 162(6): 669-677.
  28. Weisany, W., Sohrabi, Y., Heidari, G., Siosemardeh, A. and Ghassemi-Golezani, K. (2012). Changes in antioxidant enzymes activity and plant performance by salinity stress and zinc application in soybean (Glycine max L.). Plant Omics. 5(2): 60.
  29. Xie, Z., Duan, L., Tian, X., Wang, B., Eneji, A. E. and Li, Z. (2008). Coronatine alleviates salinity stress in cotton by improving the antioxidative defense system and radical-scavenging activity. Journal of Plant Physiology. 165(4): 375-384.
  30. Yassin, M., El Sabagh, A., Mekawy, A. M. M., Islam, M. S., Hossain, A., Barutcular, C., and Saneoka, H. (2019). Comparative performance of two bread wheat (Triticum aestivum L.) genotypes under salinity stress. Applied Ecology Environmental Research. 17(2): 5029-5041.
  31. Younesi, O. and Moradi, A. (2014). Effects of plant growth-promoting rhizobacterium (PGPR) and arbuscular mycorrhizal fungus (AMF) on antioxidant enzyme activities in salt-    stressed bean (Phaseolus vulgaris L.). Agriculture. 60(1).

Global Footprints