Selection by Genetic Expression Profiles of Desi and Kabuli Chickpea (Cicer arietinum L.) Genotypes Tolerant to High Temperature Stress

DOI: 10.18805/LR-541    | Article Id: LR-541 | Page : 60-66
Citation :- Selection by Genetic Expression Profiles of Desi and Kabuli Chickpea (Cicer arietinum L.) Genotypes Tolerant to High Temperature Stress.Legume Research.2021.(44):60-66
A.P. Rodríguez-Vera, J.A. Acosta-Gallegos, J.E. Ruiz-Nieto, V. Montero-Tavera paulinarodriguez.vr@gmail.com
Address : Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. C.P. 38110, Celaya, Guanajuato, México. 
Submitted Date : 12-12-2019
Accepted Date : 21-06-2020


Background: Mexico is an important producer of chickpea; however, high temperatures during flowering and grain filling limit seed yield and seed size. Plant adaptation strategies to heat stress depend on climatic and soil conditions, but mainly on the plant genetic characteristics. The increase in heat shock proteins (HSP) production occurs when plants experience an abrupt or gradual increase in temperature in order to whithstand stress with the least damage.
Methods: Sixty-five Heat Shock Protein related genes that induce transcription under heat stress were studied according to their expression profiles. This strategy allows for the selection of chickpea genotypes bearing potential heat stress tolerance. Based on the number of overexpressed (induced) genes and on its level of expression, a tolerance index was calculated.
Result: Tolerant desi genotypes were: ICC 10259, ICC 13020, ICC 4958 and Annigeri; and in the kabuli type outstanding genotypes were: Mazocahui, ICCV 2, Blanco Sinaloa 92, Tequi Blanco 95, Combo 743 and CUGA 08-1210. These genotypes showed profiles with a higher number of induced genes and higher Tolerance Indexes. These genotypes will be further evaluated in the field and under controlled conditions and in the near future used as parental stocks.


Heat stress HSP Levels of expression


  1. Barnabás, B., Jäger, K., Fehér, A. (2008). The effect of drought and heat stress on reproductive processes in cereals. Plant Cell and Environment. 31: 11-38.
  2. Devasirvatham, V., Tan, D. (2018). Impact of high temperature and drought stresses on chickpea production. Agronomy. 8: 2-9.
  3. Fragkostefanakis, S., Röth, S., Schleiff, E., Scharf, K. (2015). Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks. Plant, Cell and Environment. 38: 1881-1895.
  4. Gaur, P., Samineni, S., Thudi, M., Tripathi, S., Sajja, S., Jayalakshmi, V., Mannur, D., Vijayakumar, A., Ganga Rao, N., Ojiewo, C., Fikre, A., Kimurto, P., Kileo, R., Girma, N., Chaturvedi, S., Varshney, R., Dixit, G. (2018). Integrated breeding approaches for improving drought and heat adaptation in chickpea (Cicer arietinum L.). Plant Breeding. 138: 389-400.
  5. Guo, M., Liu, J., Ma, X., Luo, D., Gong, Z., Lu, M. (2016). The plant heat stress transcription factors (HSFs): structure, regulation and function in response to abiotic stresses. Frontiers in Plant Science. 7: 114.
  6. Iba, K. (2002). Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annual Review of Plant Biology. 53: 225-245.
  7. Jain, M., Misra G., Patel, R., Priya, P., Jhanwar, S., Khan, A., Shah, N., Singh, V., Garg, R., Jeena, G., Yadav, M., Kant, C., Sharma, P., Yadav, G., Bhatia, S., Tyagi, A., Chattopadhyay, D. (2013). A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). The Plant Journal. 74: 715-729.
  8. Krishnamurthy, L., Gaur, P., Basu, P., Chaturvedi, S., Tripathi, S., Vadez, V., Rathore, A., Varshney, R., Gowda, C. (2011). Large genetic variation for heat tolerance in the reference collection of chickpea (Cicer arietinum L.) germplasm. Plant Genetic Resources. 9: 59–69. 
  9. Kumar, J. and Abbo, S. (2001). Genetics of flowering time in chickpea and its bearing on productivity in semiarid environments. Advances in Agronomy. 72: 107-38.
  10. Lin, J. S., Kuo, C.C., Yang, I.C., Tsai, W.A., Shen, Y.H., Lin, C.C., Liang, Y.C., Li, Y.C., Kuo, Y.W., King, Y.C., Lai, H.M., Jeng, S.T. (2018). MicroRNA160 modulates plant development and heat shock protein gene expression to mediate heat tolerance in Arabidopsis. Frontiers in Plant Science. 9: 68-83.
  11. Logemann, J., Schell, J., Willmitzer, L. (1987). Improved method for the isolation of RNA from plant tissues. Analytical Biochemistry. 163: 16-20.
  12. Merga, B., Haji, J. (2019). Economic importance of chickpea: Production, value and world trade. Cogent Food and Agriculture. 5: 1-12.
  13. Montero-Tavera, V., Escobedo-Landín, M.A., Acosta-Gallegos, J.A., Anaya-López, J.L., Ruiz-Nieto, J.E. (2017). 26S: Novel reference gene from leaves and roots of common bean for biotic stress expression studies based on PCR. Legume Research-An International Journal. 3: 429-433.
  14. Parankusam, S., Bhatnagar-Mathur, P., Sharma, K. (2017). Heat responsive proteome changes reveal molecular mechanisms underlying heat tolerance in chickpea. Environmental and Experimental Botany. 141: 132-144.
  15. Parween, S., Nawaz, K., Roy, R., Pole, A., Suresh, V., Misra, G., Jain, M. (2015). An advanced draft genome assembly of a desi type chickpea (Cicer arietinum L). Scientific Reports. 5: 12806
  16. Porch, T., Hall, A. (2013). Heat tolerance. In: C. Kole, editor, Genomics and breeding for climate-resilient crops. Springer, 2: 167-202.
  17. Rikhvanov, E.G., Gamburg, K.Z., Varakina, N.N., Rusaleva, T.M., Fedoseeva, I.V., Tauson, E.L., Stupnikova, I.V., Stepanov, A.V., Borovskii, G.B., Voinikov, V.K. (2007). Nuclear-mitochondrial crosstalk during heat shock in Arabidopsis cell culture. Plant Journal. 52: 763-778.
  18. Rosielle, A., Hamblin, J. (1981). Theoretical aspects of selection for yield in stress and non-stress environment. Crop Science. 21: 943-6.
  19. Srinivasan, A., Takeda, H., Senboku, T. (1996). Heat tolerance in food legumes as evaluated by cell membrane thermostability and chlorophyll fluorescence techniques. Euphytica. 88: 35-45.
  20. Ward, G., Shakespeare, R. (1998). Rendering with radiance: the art and science of lighting visualization. Morgan Kaufmann Publishers Inc. San Francisco, CA, USA.
  21. Warnes, R.W., Bolker, B., Bonebakker, L., Gentleman, R., Huber, W., Liaw, A., Lumley, T., Maechler, M., Magnusson, A., Moeller, S., Schwartz, M., Venables, B. (2015). gplots: various R programming tools for ploting data. R package version 2.17.0. http://CRAN.R-project.org/package= gplots.
  22. Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, L., Rozen, S., Madden, T. (2012). Primer-Blast: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 13: 134.
  23. Zhong, L., Zhou, W., Wang, H., Ding, S., Lu, Q., Wen, X., Peng, L., Zhang, L., Lu, C. (2013). Chloroplast small heat shock protein HSP21 interacts with plastid nucleoid protein pTAC5 and is essential for chloroplast development in Arabidopsis under heat stress. Plant Cell. 25: 2925-2943.

Global Footprints