Quantitative Detection of Aflatoxin and Species Identification of Aspergillus section Flavi Isolates from Peanuts using Molecular Approaches 

DOI: 10.18805/LR-530    | Article Id: LR-530 | Page : 195-199
Citation :- Quantitative Detection of Aflatoxin and Species Identification of Aspergillus section Flavi Isolates from Peanuts using Molecular Approaches.Legume Research-An International Journal.2020.(43):195-199
I. Lavkor lavkor@gmail.com
Address : Biological Control Research Institute, Kisla Street, 01321, Yuregir, Adana, Turkey.
Submitted Date : 9-10-2019
Accepted Date : 26-02-2020

Abstract

Totally, 50 Aspergillus section Flavi were identified isolates having aflatoxin biosynthesis genes on peanut by molecular method and aflatoxin production. Primer pair (IGS-F/R) recognized the aflatoxin biosynthesis gene (aflJ-aflR) targeting the intergenic region (IGS) on DNA was amplified by polymerase chain reactions (PCR). The PCR product were restricted by BglII enzyme within Restriction Fragment Length Polymorphism (RFLP) and obtained from 33 (66%) Aspergillus flavus was cleaved into three band sizes of 362, 210 and 102 bp. However, BglII enzyme generated two band sizes of 363 and 311 bp for 17 (34%) Aspergillus parasiticus. An investigation examined DNA sequence data to characterize these isolates and describe the species. Phylogenetic analysis showed that A. flavus and A. parasiticus have been identified in different groups. All the A. flavus and A. parasiticus isolates produced aflatoxins. The present study provides a new method on molecular characterization of A. section Flavi in Turkey.

Keywords

Aflatoxin Aspergillus flavus Aspergillus parasiticus Molecular approach Peanut Phylogenetic analysis

References

  1. Abbas, H.K., Zablotowicz, R.M., Horn, B.W., Phillips, N.A., Johnson, B.J., Jin, X. and Abel, C.A. (2011). Comparison of major biocontrol strains of non-aflatoxigenic Aspergillus flavus for the reduction of aflatoxins and cyclopiazonic acid in maize. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 28: 198-208.
  2. AOAC, (2002). Official Method 991.31. Aflatoxins in corn, raw peanuts and peanut butter immunoaffinity column (AflaTest) method. AOAC Int. 42: 2-18. 
  3. Barros, G.G., Torres, A.M., Rodriguez, M.I. and Chulze, S.N. (2006). Genetic diversity within Aspergillus flavus strains isolated from peanut-cropped soils in Argentina. Soil Biol Biochem. 38: 145-152.
  4. Clevstrom, G. and Ljunggren, H. (1985). Anatoxin formation and the dual phenomenon in Aspergillus flavus Link. Mycopathologia. 92: 129-139.
  5. Doyle, J.J. and Dickson, E.E. (1987). Preservation of plant samples for DNA restriction endonuclease analysis. Taxon. 36: 715-722.
  6. Ehrlich, K.C., Montalbano, B.G. and Cotty, P.J. (2003). Sequence comparison of aflR from different Aspergillus species provides evidence for variability in regulation of aflatoxin production. Fungal Genet Biol. 38: 63-74.
  7. Ehrlich, K.C., Kobbeman, K., Montalbano, B.G. and Cotty, P.J. (2007). Aflatoxin-producing Aspergillus species from Thailand. Int J Food Microbiol. 114: 153-159.
  8. Khoury, A., Atoui, A., Rizk, T., Lteif, R., Kallassy, M. and Lebrihi, A. (2011). Differentiation between Aspergillus flavus and Aspergillus parasiticus from pure culture and aflatoxin contaminated grapes using PCR-RFLP analysis of aflR-    aflJ intergenic spacer. J Food Sci. 76: 247-253.
  9. Giorni, P., Magan, N., Pietri, A., Bertuzzi, T. and Battilani, P. (2007). Studies on Aspergillus section Flavi isolated from maize in northern Italy. Int J Food Microbiol. 113: 330-338.
  10. Georgianna, D.R. and Payne, G.A. (2009). Genetic regulation of aflatoxin biosynthesis: From gene to genome. Fungal Genet Biol. 46: 113-125.
  11. Gonzalez-Salgado, A., Gonzales-Jaen, T., Vazquez, C. and Patino, B. (2008). Highly sensitive PCR-based detection method specific for Aspergillus flavus in wheat flour. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 25: 758-764.
  12. Heperkan, D., Moretti A., Dikmen, C.D. and Logrieco, A.F. (2012). Toxigenic fungi and mycotoxin associated with figs in the Mediterranean area. Phytopathologia. 51: 119-130.
  13. Hussain, A., Afzal, A., Irfan, M. and Malik, K.A. (2015). Molecular detection of aflatoxin producing strains of Aspergillus flavus from peanut (Arachis hypogaea). Turkish JAF Sci Tech. 3: 335-341.
  14. Kesmen, Z., Yetiman A. E., Güllüce, A. and Arslan, H. (2014). pksL 1 genine özgül PCR yöntemi ile aflatoksikojenik Aspergillus flavus türlerinin tespiti. 8. Ulusal Moleküler ve Tanýsal Mikrobiyoloji Kongresi, 4-7 Haziran 2014, Ankara, Türkiye.
  15. Kumar, S., Stecher, G., Peterson, D. and Tamura, K. (2012). Mega cc: computing core of molecular evolutionary genetics analysis program for automated anditerative data analsis. Bionformatics. 28: 2685-2686.
  16. Kumeda, Y., Asao, T., Takahashi, H. and Ichinoe, M. (2003). High prevalence of B and G aflatoxin-producing fungi in sugarcane field soil in Japan: heteroduplex panel analysis identifies a new genotype within Aspergillus section Flavi and Aspergillus nomius. FEMS Microbiol Ecol. 45: 229-238.
  17. Lavkor, I. (2013). Control of diseases and aflatoxin occurrences with proper cultural and disease management practices in peanut growing. PhD, C.U., Adana, Turkey.
  18. Lavkor, I. (2019). Molecular characterization of aflatoxin biosynthesis genes of Aspergillus flavus from peanuts production area. Legume Res. 42: 609-614.
  19. Lee, Y.J. and Hagler, W.M. (1991). Aflatoxin and cyclopiazonic acid production by Aspergillus flavus isolated from contaminated maize. J Food Sci. 56: 871-872.
  20. Manonmani, H.K., Anand, S., Chandrashekar, A. and Rati, E.R. (2005). Detection of aflatoxigenic fungi in selected food commodities by PCR. Process Biochem. 40: 2859-2864.
  21. Midorikawa, G.E.O., Sousa M.L.M., Silva, O.F., Dias, J.S.A., Kanzaki, L.I.B., Hanada, R.E., Mesquita, R.M.L.C, Gonçalves, R.C., Alvares, V.S., Bittencourt, D.M.C. and Miller, R.N.G. (2014). Characterization of Aspergillus species on Brazil nut from the Brazilian Amazonian region and development of a PCR assay for identification at the genus level. BMC. Microbiology. 14: 1-9. 
  22. Nikolic, M., Nikolic, A., Jaukovic, M., Savic, I., Petrovic, T., Bagi, F. and Stankovic, S. (2018). Differentiation between Aspergillus flavus and Aspergillus parasiticus isolates originated from wheat. Genetika. 50: 143-152.
  23. Raphaël, K.J., Gnonlonfin, B.G.J., Harvey, J., Wainaina, J., Wanjuki, I., Skilton, R.A. and Teguia, A. (2013). Mycobiota and toxigenecity profile of Aspergillus flavus recovered from food and poultry feed mixtures in Cameroon. JAPSC. 2: 98-107.
  24. Razzaghi-Abyaneh, M., Shams-Ghahfarokhi, M., Allameh, A., Kazeroon-Shiri, A.M., Ranjbar-Bahadori, S., Mirzahoseini, H. and Rezaee, M.B. (2006). A survey on distribution of Aspergillus section Flavi in corn field soils in Iran: Population patterns based on aflatoxins, cyclopiazonic acid and sclerotia production. Mycopathologia. 161: 183-192.
  25. Rodrigues, P., Venâncio, A., Kozakiewicz, Z. and Lima, N. (2009). A polyphasic approach to the identification of aflatoxigenic and non-aflatoxigenic strains of Aspergillus section Flavi isolated from Portuguese almonds. Int J Food Microbiol. 129: 187-193.
  26. Saitou, N. and Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetictrees. Mol Biol Evol. 4: 406-425.
  27. Shapira, R., Paster, N., Eyal, O., Menasherov, M., Mett, A. and Salomon, R. (1996). Detection of aflatoxigenic molds in grains by PCR. Appl Environ Microbiol. 62: 3270–3273.
  28. Thompson, J.D., Higgins, D.G. and Gibson, T.J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680.
  29. Vaamonde, G., Patriarca, A., Fernandez Pinto, V., Comerio, R. and Degrossi, C. (2003). Variability of aflatoxin and cyclopiazonic acid production by Aspergillus section flavi from different substrates in Argentina. Int J Food Microbiol. 88: 79-84.

Global Footprints