Legume Research

  • Chief EditorJ. S. Sandhu

  • Print ISSN 0250-5371

  • Online ISSN 0976-0571

  • NAAS Rating 6.80

  • SJR 0.391

  • Impact Factor 0.8 (2023)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Legume Research, volume 43 issue 6 (december 2020) : 805-811

The Role of the Expansin Gene in the Process of Novel Subterranean Seed Development in Arachis duranensis

Yongli Zhang, Lang Qian, Zhennan Wang, Qingping Zhang, Hui Song
1Grassland Agri-husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China. 
  • Submitted14-09-2019|

  • Accepted08-05-2020|

  • First Online 28-07-2020|

  • doi 10.18805/LR-525

Cite article:- Zhang Yongli, Qian Lang, Wang Zhennan, Zhang Qingping, Song Hui (2020). The Role of the Expansin Gene in the Process of Novel Subterranean Seed Development in Arachis duranensis. Legume Research. 43(6): 805-811. doi: 10.18805/LR-525.
Background: Plants in the genus Arachis produce flowers aerially that develop into gynophores that grow into the ground, where they develop into fruits. Although some aerial gynophores develop into pods aboveground, embryo or seed abortion occurs in these individuals. During pod development, the shell wall initially comprises the majority of the fruit volume, but then the seeds expand up to the total pod volume. Expansins are plant cell wall-loosening proteins involved in cell enlargement and a variety of other developmental processes in which cell-wall modification occurs. 
Methods: In this study, we analyzed the expansin genes during seed development using RNA-seq data by bioinformatic approaches. 
Results: We identified five expansin genes exhibited up-regulated expression, while four genes were down-regulated expression using Arachis duranensis RAN-seq data. Multiple transcription factors regulate AdEXPs throughout seed development. Genes co-expressed with AdEXPs are involved in metabolic processes throughout pod development into seed development, reframing the current understanding of the novel subterranean peanut fruits.
  1. Bertioli D.J., Cannon S.B., Froenicke L., Huang G., Farmer A.D., Cannon E.K.S., Liu X., Gao D., Clevenger J., Dash S., et al. (2016). The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nature Genetics. 48: 438-446. DOI: 10.1038/ng. 3517.
  2. Boron A.K., Van Loock B., Suslov D., Markakis M.N., Verbelen J.P., Vissenberg K. (2015). Over-expression of AtEXLA2 alters etiolated arabidopsis hypocotyl growth. Annals of Botany. 115: 67-80. DOI: 10.1093/aob/mcu221.
  3. Carey R.E., Hepler N.K., Cosgrove D.J. (2013). Selaginella moellendorffii has a reduced and highly conserved expansin superfamily with genes more closely related to angiosperms than to bryophytes. BMC Plant Biology. 13: 4. DOI: 10.1186/14 71-2229-13-4.
  4. Clevenger J., Chu Y., Scheffler B., Ozias-Akins P. (2016). A develop- -mental transcriptome map for allotetraploid Arachis hypogaea. Frontiers in Plant Science. 7: 1446. DOI: 10.3389/fpls.2016.01446.
  5. Cosgrove D.J. (2015). Plant expansins: diversity and interactions with plant cell walls. Current Opinion in Plant Biology. 25: 162-172. DOI: 10.1016/j.pbi.2015.05.014.
  6. Gao C., Sun J., Wang C., Dong Y., Xiao S., Wang X., Jiao Z. (2017). Genome-wide analysis of basic/helix-loop-helix gene family in peanut and assessment of its roles in pod development. PLoS ONE. 12: e0181843. DOI: 10.1371/journal.pone.0181843.
  7. Guimaraes L.A., Mota A.P.Z., Araujo A.C.G., de Alencar Figueiredo L.F., Pereira B.M., de Passos Saraiva M.A., Silva R.B., Danchin E.G.J., Guimaraes P.M., Brasileiro A.C.M. (2017). Genome-wide analysis of expansin superfamily in wild Arachis discloses a stress-responsive expansin-like B gene. Plant Molecular Biology. 94: 79-96. DOI: 10.1007/s11103-017-0594-8.
  8. Gupta K., Kayam G., Faigenboim-Doron A., Clevenger J., Ozias-Akins P., Hovav R. (2016). Gene expression profiling during seed-filling process in peanut with emphasis on oil biosynthesis networks. Plant Science. 248: 116-127. DOI: 10.1016/j.plantsci.2016.04.014.
  9. Hur Y.S., Um J.H., Kim S., Kim K., Park H.J., Lim J.S., Kim W.Y., Jun S.E., Yoon E.K., Lim J., Ohme-Takagi M., Kim D., Park J., Kim G.T., Cheon C.I. (2015). Arabidopsis thaliana homeobox 12 (ATHB12), a homeodomain-leucine zipper protein, regulates leaf growth by promoting cell expansion and endoreduplication. New Phytologist. 205: 316-328. DOI: 10.1111/nph.12998.
  10. Jakoby M., Weisshaar B., Dröge-Laser W., Vicente-Carbajosa J., Tiedemann J., Kroj T., Parcy F., Group b.R. (2002). bZIP transcription factors in Arabidopsis. Trends in Plant Science. 7: 106-111. DOI: 10.1016/S1360-1385(01) 02223-3.
  11. Marowa P., Ding A., Kong Y. (2016). Expansins: roles in plant growth and potential applications in crop improvement. Plant Cell Reports. 35: 949-965. DOI: 10.1007/s00299-016-1948-4.
  12. Pattee H.E., Johns E.B., Singleton J.A., Sanders T.H. (1974). Composition changes of peanut fruit parts during maturation. Peanut Science. 1: 57-62. DOI: 10.3146/i0095-3679-1-2-6.
  13. Rauf M., Arif M., Fisahn J., Xue G.P., Balazadeh S., Mueller-Roeber B. (2013). NAC transcription factor speedy Hyponastic growth regulates flooding-induced leaf movement in Arabidopsis. The Plant Cell. 25: 4941-4955. DOI: 10.11 05/tpc.113.117861.
  14. Rushton P., Somssich I., Ringler P., Shen Q. (2010). WRKY transcription factors. Trends in Plant Science. 15: 247-258. DOI: 10.1016/j.tplants.2010.02.006.
  15. Sampedro J., Cosgrove D.J. (2005). The expansin superfamily. Genome Biology. 6: 242. DOI: 10.1186/gb-2005-6-12-242.
  16. Smith B. (1950). Arachis hypogaea, aerial flower and subterranean fruit. American Journal of Botany. 37: 802-850.
  17. Song H., Sun J., Yang G. (2019). The characteristic of Arachis duranensis-specific genes and their potential function. Gene. 705: 60-66. DOI: 10.1016/j.gene.2019.04.052.
  18. Zhang Y., Wang P., Xia H., Zhao C., Hou L., Li C., Gao C., Zhao S., Wang X. (2016). Comparative transcriptome analysis of basal and zygote-located tip regions of peanut ovaries provides insight into the mechanism of light regulation in peanut embryo and pod development. BMC Genomics. 17: 606. DOI: 10.1186/s12864-016-2857-1.

Editorial Board

View all (0)