The Impact of Water Deficit on The Soybean (Glycine max L.) Reproductive Stage of Development 

DOI: 10.18805/LR-517    | Article Id: LR-517 | Page : 693-697
Citation :- The Impact of Water Deficit on The Soybean (Glycine max L.) Reproductive Stage of Development.Legume Research.2020.(43):693-697
Z. Miladinov, I. Maksimovic, S. Balesevic Tubic, J. Miladinovic, V. Djordevic, M.Vasiljevic, V. Radic zlatica.miladinov@ifvcns.ns.ac.rs
Address : Department for Soybean, Institute of Field and Vegetable Crops, 21000 Novi Sad, Serbia.
Submitted Date : 10-07-2019
Accepted Date : 6-11-2019


Experiment was conducted in 2014, 2015 and 2016 at the Institute of Field and Vegetable Crops, Novi Sad, Serbia, to study the effects of water deficit treatments during a soybean reproductive stage. Two water deficit treatments were conducted T1 (from beginning of blossom to seed maturation) and T2 (from beginning of seed filling to seed maturation period) and control (no water deficit). The results showed that water deficit during seed formation has a significant effect on germination energy, germination precentage and abnormal seedling. Obtained results are of great importance for farmers, because under favorable conditions, a large number of abnormal seedling has the ability to sprout, reach the reproductive stage and participate in yield formation.


Germination Glycine max L. Reproductive stage Water deficit


  1. Bates L. S., Waklren R. P., Teare I. D. (1973). Rapid determination of free proline water stress studies. Plant and Soil. 39: 205-207.
  2. Benderitter M., Maupoli V., Vergely C., Dalloz F., Briot F., Rochette L. (1998). Studies by electron paramagnetic resonance of the importance of iron in the hydroxyl scavenging properties of ascorbic acid in plasma: Effects of iron chelators. Fundamental& Clinical Pharmacology. 12: 510-516.
  3. Carrera C., Martínez M. J., Dardanelli J., Balzarini M. (2009). Water deficit effect on the relationship between temperature during the seed fill period and soybean seed oil and protein concentrations. Crop Science. 49: 90–998.
  4. Conklin P. L., Barth C. (2004). Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens and the onset of senescence. Plant Cell. 27: 959-971.
  5. Dornbos D. L., Mullen R. E., Shibles R. M. (1989). Drought stress effects during seed fill on soybean seed ger minat ion and vigor. Crop Science. 29: 476–480.
  6. Granlund M., Zimmerman D. C. (1975). Effect of drying conditions on oil content of sunflower (Helianthus annuus L.) seeds as determined by wide line Nuclear Magnetic Resonance (NMR). Proceedings of the North Dakota Academy of Science. 27: 128–132.
  7. Hayat S., Hayat Q., Alyemeni M. N., Wani A. S. Pichtel, J., Ahmad A. (2012). Role of proline under changing environments. Plant Signaling Behavior. 7 (11): 1456–1466.
  8. Heatherly L. G. (1993). Drought stress and irrigation effects on germination of harvested soybean seed. Crop Science. 33: 777-781.
  9. ISTA (1996). International rules for seed testing. Zurich: ISTA.
  10. Lambers H., Chapin F., Pons T. (2008). Plant Physiological Ecology. Springer, New York, pp 540.
  11. Li H. Y., Li X. S., Zhang D. Y., Liu H. L., Guan K. Y. (2013). Effects of drought stress on the seed germination and early seedling growth of the endemic desert plant Eremosparton songoricum (Fabaceae). Experimental and Clinical Sciences Journal. 12: 89-101.
  12. Magdi A., Mousa À., Adel D. Al Qurashi À. D. (2018). Growth and yield of cowpea (Vigna unguiculata L.) cultivars under water deficit at different growth stages. Legume Research-An International Journal. 41: 702-709.
  13. Ozturk A., Aydin F. (2004). Effect of water stress at various stages on some quality parameters of winter wheat. Crop Science. 190: 93-99.
  14. Placer Z. A., Cushman L. L., Johnson B. C. (1966). Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Analytical Biochemistry. 16: 359-364.
  15. Rotundo J. L., Westgate, M. E. (2010). Rate and duration of seed component accumulation in water-stressed soybean. Crop Science. 50: 676–684.
  16. Saxena S. N., Kakani R. K., Sharma L. K., Agarwal D., John S., Sharma Y. (2019). Effect of water stress on morpho-    physiological parameters of fenugreek (Trigonella foenum-graecum L.) genotypes. Legume Research-An International Journal. 42: 60-65.
  17. Shadakshari T. V., Yathish K. R., Kalaimagal T., Gireesh C., Gangadhar K., Somappa J. (2014). Morphological response og soybean under water stress during pod development stage. Legume Research-An International Journal. 37:37-46.
  18. Simiciklas K. D., Mullen R. E., Carlson R. E., Knapp A. D. (1989). Drought induced stress effects on soybean seed calcium and seed quality. Crop Science. 29: 1519–1523.
  19. Sionit N., Kramer P. J. (1977). Effect of water stress during different stages of growth of soybeans. Agronomy Journal. 69: 274–278.
  20. Tuteja N., Gill S. S., Tiburcio A. F., Tuteja R. (2012). Improving Crop Resistance to Abiotic Stress. Wiley-Blackwell; Weinheim: 10.
  21. Vieira R. D., Tekrony D. M., Egli D. B. (1992). Effect of drought and defoliation stress in the filed on soybean seed germination and vigor. Crop Science. 32: 471-475.
  22. Vujosevic B., Canak P., Babic M., Mirosavljevic M., Mitrovic B., Stanisavljevic D., Tatic M. (2018). Ponasanje atipicnih klijanaca kukuruza u poljskoj proizvodnji. Ratarstvo i povrtarstvo. 55: 34-38.
  23. Wilcox J. R. (1985). Breeding soybean for improved protein quantity and quality. In: World Soybean Research Conference, III: Proceedings. Ed. R Shibles, Boulder, CO: Westview Press, pp. 380–386. 

Global Footprints