Analysis of variance (ANOVA)
The pooled analysis of variance (ANOVA) for grain yield and other yield attributes (Table 2 and Table 3) of eight genotypes of chickpea were tested under six environmental conditions and showed significant variation (p<0.001) for genotypes (G), environments (E) and genotype-by-environment interactions (G x E). The main effect and its interaction effect showed significant variance, indicating that genotype performance fluctuates from environment to environment and confirming the absence of stable genotypes across environments. Grain yield variance among genotypes can be explained by a higher percentage of variation explained by environmental factors. This suggests that, in Odisha, the environment has a significant impact on chickpea grain yield. The presence of G x E interaction was clearly demonstrated by the AMMI model in which five of the principal component axes (IPCA1, IPCA2, IPCA3, IPCA4 and IPCA5) were significant (Table 3). Significant G x E interaction also reported by
Balapure et al., (2016) and
Kumar et al., (2020) for grain yield by using AMMI model.
AMMI-1 Biplot analysis for additive and interaction effects
There is a considerable G × E interaction that affects grain production in different growing environments. AMMI-1 biplot quadrats I and II contain the genotypes of the four ICCVs (ICCV 14108, ICCV 15115, ICCV 14102 and ICCV 15114), as well as the two environments (E4 and E5) that have the same positive sign of IPCA1 score (Fig 1). Furthermore, genotypes (JAKI 9218, ICCV 15118, JG 14 and ICCV 14105), as well as environments (E1–E6 of the AMMI-1 biplot), exhibit a positive interaction since they share the same negative sign of IPCA1 score in the AMMI-1 biplot quadrats III and IV. Surroundings with long arrows exert more interaction force than environments with short arrows. As a result, the environments E4, E1, E2, E3, E5, E6 have a lower contact force than the other environments. Quadrant I of the AMMI 1 biplot contains genotypes (ICCV 14108, ICCV 15115 and ICCV 1402) that are less impacted by the genotype-environment interaction. The genotypes and environments on the right side of the midpoint of the axis in the graph give more than those on the left side of the axis. To put it another way, the genotypes of the I. cruzi strains with the highest yield are ICCV 14102, ICCV 15115 and ICCV 14108. E4 and E5 were characterised as high yielding environments, while E1, E2, E3 and E6 were categorised as low yielding. However, there were no closely linked genotypes for the environment E4 that were readily available. All the findings of
Funga et al., 2017 in the present analysis are in agreement with the findings of
Kumar et al., (2020) and
Dhuria and Babbar (2021).
AMMI-2 biplot analysis and which-won-where polygon view of biplot
Using an AMMI2 biplot, the amplitude of the G x E interaction is shown. The IPCA1 score was plotted against the IPCA2 score in order to better understand the adaptation of the IPCA1. The IPCA1 score accounts for 78.00%, whereas the IPCA2 score accounts for 12.20%. More interaction occurs between genotypes and surroundings that are far from the origin. There are beneficial interactions between genotypes and surroundings from the same sector. On the contrary, oppositely polarised genes and environments interact negatively. Genes (ICCV 15114 and JAKI 9215) closer to the AMMI-1 biplot’s centre indicated that they were stable across the environment (general adaptability) and were not affected by environmental interactions (Fig 2). The environments (E2, E4 and E5) were least responsive or interactive based on their far distance from the origin in AMMI-2 biplot. The quadrant I and IV environments (E4 and E5) have a higher potential than the quadrant II and III settings (E1, E2, E3 and E6) (low potential environment). These three genotypes have similar yield performance in the same environment because they have the same genetic background. Mean yield and environmental responsiveness may differ between genotypes that were isolated from each other. Genes and environments are shown as polygons in the ‘which won where’ or ‘which is better for what’ perspective of genotypes and environments (Fig 3). The polygon is formed by combining the PC1 (78%) and PC2 (12%) components and connecting the farthest genotypes. Genetic variants found at the polygon’s corners are the greatest or worst performers in specific situations, whereas the variant found at the polygon’s centre is the top performer across all of this sector’s environmental contexts and circumstances (
Yan and Tinker, 2006). For the stability analysis of chickpea using the AMMI model,
Funga et al., (2017) and
Tiwari et al., (2018) similarly reported similar results. As a result, the polygon in this study has four vertexes and an equality line that divides the biplot for seed yield into five sectors, of which all the environments are spread in two of them. In E4 and E5, ICCV 14102 and ICCV 14108 are the vertex genotypes, respectively, while ICCV 15118 is the vertex genotype in E6. These vertex genotypes were shown to be the highest performers in their respective contexts.
AMMI stability value (ASV) and identification of stable high yielding genotypes
Average grain yields were calculated for all eight genotypes using a linear mixed effect model that included additive main effects and multiplicative interactions (ASV), IPCA scores and weighted averages of absolute grain yields from the singular value decomposition of the matrices of best linear unbiased predictions for genotype environment interaction effects (WAAS) were depicted in Table 4. Genotype ICCV 15118 had the lowest mean grain yield of 940.09 kg/ha, whereas genotype ICCV14102 had the highest mean grain yield of 1220.57 kg/h. The genotypes ICCV14102 (1220.57 kg/ha), ICCV 15115 (1125.40 kg/ha) and ICCV14108 (1110.01 kg/ha) have their mean grain yield above the grand mean yield (1054.48 kg/ha), whereas five genotypes have yield lower than the grand mean yield. Ordering genotypes by yield stability can be done with the help of the AMMI stabilisation value (ASV), which was first introduced by
Purchase and colleagues (2000). When IPCA1 (interaction principal component analysis axis 1) scores are shown against IPCA2 (interaction principal component analysis axis 2), the ASV is the distance from zero. In order to account for the relative contribution of IPCA1 and IPCA2 to the total GE sum of squares, the IPCA1 score must be weighted by the proportionate difference between IPCA1 and IPCA2 scores (Table 4). Once the distance to zero has been calculated, the Pythagorean Theorem is applied
(Purchase et al., 2000). A genotype with the lowest ASV score is the most stable and vice versa, according to the ASV technique. As a result, JAKI 9218 (ASV = 1) and ICCV 15114 (ASV = 2) are the most environmentally stable genotypes, although their mean grain yields are low, at 968.28 and 1034.36 kg/ha, respectively. Singular value decomposition (SVD) of best linear unbiased predictions for genotype-environment interaction effects derived by a linear mixed-effect model (WAAS) from this study also yielded a similar ranking in terms of absolute scores. With the use of the WAAS index, the best genotypes for any given situation can be found
(Olivoto et al., 2019). High-yielding and stable genotypes can be identified using a yield stability index (YSI). The genotypes with the lowest YSI values are deemed the most stable and have a greater mean grain yield, according to the YSI technique. These genotypes have the greatest environmental stability, as measured by the genotype stability index (YSI) (Table 4). There was a significant difference in yield between the genotypes JAKI 9218, JG 14 and ICCV 15118 in environment E4 and ICCV 14106 in environment E5 when comparing their crossover performance across these six test conditions (Fig 4). There are parallels between our results and those described in the literature on chickpea by
Funga and Bhardwaj (2017),
Irfan (2018) and
Dhuria and Babbar (2021).