Legume Research
Chief EditorJ. S. Sandhu
Print ISSN 0250-5371
Online ISSN 0976-0571
NAAS Rating 6.80
SJR 0.391
Impact Factor 0.8 (2024)
Chief EditorJ. S. Sandhu
Print ISSN 0250-5371
Online ISSN 0976-0571
NAAS Rating 6.80
SJR 0.391
Impact Factor 0.8 (2024)
Efficacy of Bioagents against Sclerotinia Rot of Chickpea Incited by Sclerotinia sclerotiorum
Submitted12-07-2021|
Accepted12-02-2022|
First Online 31-03-2022|
doi 10.18805/LR-4729
Background: Sclerotinia sclerotiorum (Lib.) de Barry is a soil-borne plant pathogen, capable of infecting more than 500 host plants worldwide. It is a major pathogen that plays a crucial role in reducing the yield of economically important crops. Sclerotinia rot also known as Stem rot or white mold, caused by Sclerotinia sclerotiorum is a serious disease of chickpea.
Methods: The antagonistic potential of four bioagents i.e. Trichoderma harzianum (Th-BKN), Trichoderma viride (Tv-BKN), Pseudomonas fluorescens (Pf-BKN) and Bacillus subtilis (Bs- BKN) were isolated from chickpea rhizospheric soil. The fungal bioagents were tested for their antagonistic potential against the pathogen in vitro by modified dual culture technique on potato dextrose agar (PDA) medium. While bacterial antagonists tested for their antagonistic potential against the pathogen in vitro by paper disc inoculation technique on Nutrient Agar (NA) and Pseudomonas Agar Fluorescens (PAF) media. Each treatment was replicated four times, incubated at 23±10°C, data on the antagonistic activity of different bioagents were recorded and percent inhibition was calculated for each antagonist.
Result: The fungal antagonists T. harzianum (Th-BKN) resulted in maximum growth inhibition of the pathogen (70.48%) and bacterial antagonists, Pseudomonas fluorescens (Pf-BKN) (37.56%) was more effective than the Bacillus subtilis (Bs- BKN).
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.