Comparative Functional and Numeric Response of Two Coccinellids (Coccinella septempunctata and Cheilomenes sexmaculata) Preying Cowpea Aphid (Aphis craccivora)

DOI: 10.18805/LR-4697    | Article Id: LR-4697 | Page : 521-526
Citation :- Comparative Functional and Numeric Response of Two Coccinellids (Coccinella septempunctata and Cheilomenes sexmaculata) Preying Cowpea Aphid (Aphis craccivora).Legume Research.2022.(45):521-526
Gaurang Chhangani, M.K. Mahla, R. Swaminathan, Lekha, H. Swami, N.L. Dangi gaurangchhangani@gmail.com
Address : Department of Entomology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur-313 001, Rajasthan, India.
Submitted Date : 19-06-2021
Accepted Date : 14-09-2021


Background: The cowpea aphid, Aphis craccivora Koch (Hemiptera: Aphididae), a plant lice known to commonly attack plants that causes loss by sucking sap from phloem and act as vector for viruses. The aphidophagous coccinellids are efficient in controlling the pestiferous population of aphids. The two coccinellid Coccinella septempunctata and Cheilomenes sexmaculata are efficient in predation of cowpea aphid, Aphis craccivora in southern Rajasthan. The present study determined the response of prey consumption at different prey densities.
Methods: To compute the functional and numeric response of the lady bird beetle on cowpea aphid, experiment was conducted in vitro by using cowpea potted plant in caged conditions at Department of Entomology, Rajasthan College of Agriculture during 2019-20. The cowpea pea plants were sown in small pots and were placed in aluminium insect cages having 15 cm × 15 cm × 15 cm size. The predatory potential of coccinellid grubs and adults were evaluated at six different prey densities (aphids per arena): 25, 50, 75, 100, 125, 150 and 200 with 5 replications.
Result: The grub and adults of C. septempunctata consumed more prey as compared to C. sexmaculata. Both the coccinellid showed Type II functional response when functional curve was plotted. The linear regression method suggested that C. septempunctata required less time to act upon prey as compared to C. sexmaculata. The C. septempunctata also showed more numeric response in terms of ECI [conversion efficiency of prey consumption (ECI) into biomass (egg)] at different prey densities. The fecundity in both the cases increased with the increased prey densities that eventually decreased after reaching the maximum egg laying capacity at prey density of 125 aphids. In all the cases it was found that consumption rate of predaceous beetle increased with increasing aphid population.


ECI Hollings disc equation and prey predator relationship Type II response


  1. Agarwala, B.K. and Yasuda, H. (2000). Competitive ability of ladybird predators of aphids: A review of Cheilomenes sexmaculata (Fabr.) (Coleoptera: Coccinellidae) with a worldwide checklist of preys. Journal of Aphidology. 14:1-20.
  2. Ding-Xin, Z. (1986). Studies on predation of the coccinellid beetle, Scymnus hoffmanni Weise to cotton aphid, Aphis gossypii Glover I. Functional response of Scymnus hoffmanni to cotton aphid. Contributions from Shanghai Institute of Entomology. 6: 43-57.
  3. Dixon, A.F.G. (2000). Insect Predator_Prey Dynamics, Ladybird Beetles and Biological Control, Cambridge: Cambridge University Press.
  4. Evans, E.W. and Dixon, A.F.G. (1986). Cues for oviposition by ladybird beetles (Coccinellidae): Response to aphids. Journal of Animal Ecology. 55:1027-1034.
  5. Farhadi, R., Allahyari, H. and Juliano, S.A. (2010). Functional response of larval and adult stages of Hippodamia variegata (Coleoptera:Coccinellidae) to different densities of Aphis fabae (Hemiptera:Aphididae). Environment Entomology. 39: 1586-1592.
  6. Chhangani, G., Mahla, M.K, Swaminathan, R., Jain, H.K., Ahir, K.C., Sharma, K. (2021). Diversity of insect fauna associated with summer and monsoon cowpea [Vigna unguiculata (L.) Walp.]. Legume Research First Online DOI: 10.18805/ LR-4529.
  7. Hassell, M.P. (1978). The Dynamics of Arthropod Predator Prey Systems, Monographs in Population Biology 13. Princeton, NJ: Princeton University Press, 237 pp.
  8. Hodek, I. and Honek, A. (1996). Ecology of Coccinellidae. Dordrecht, Boston, London: Kluwer Academic Publishers, 464.
  9. Holling, C.S. (1959). Some characteristics of simple types of predation and parasitism. The Canadian Entomologist. 91: 385-398.
  10. Jat, G.C., Swaminathan, R, Yadav, P.C, Deshwal, H.L., Dotasara, S.K., Choudhary, S. and Choudhary, H.S. (2008). Effect of natural enemies on the population dynamics of insect- pest of cabbage ecosystem. International Journal of Current Microbiology and Applied Sciences. 6(6): 696-708.
  11. Juliano, S.A. (1993). Nonlinear Curve Fitting: Predation and Functional Response Curves. In: Design and Analysis of Ecological Experiments [S.M. Scheiner, J. Gurevitch, (eds.)]. Chapman and Hall, New York, 432 pp. p. 159-182.
  12. Juliano, S.A. (2001). Non-linear Curve Fitting: Predation and Functional Response Curves. In Design and Analysis of Ecological Experimentsm, 2nd edition, [(eds) S.M. Scheiner and J. Gurevitch], New York: Chapman and Hall, pp. 178- 196.
  13. Klingler, J., Kovalski, I., Silberstein, L., Thompson, G.A. and Perl-Treves, R. (2001). Mapping of cotton-melon aphid resistance in melon. Journal of the American Society Horticultural Sciences. 126: 56-63.
  14. Kumar, A., Kumar, N., Siddiqui, A. and Tripathi, C.P.M. (2001). I. Prey predator relationship between Lipaphis erysimi Kalt. (Hemiptera: Aphididae) and Coccinella septempunctata L. (Coleoptera: Coccinellidae). II. Effect of host plants on functional response of the predator. Journal of Applied Entomology. 123: 591-601.
  15. Lee, J.H. and Kang, T.J. (2004). Functional response of Harmonia axyridis (Coleoptera: Coccinellidae) on Aphis gossypii Glover (Homoptera: Aphididae) in the laboratory. Biological Control. 31: 306-310.
  16. Minks, A.K. and Harrewijn, P. (1989). Aphids: Their Biology, Natural Enemies and Control. Vol. C. Elsevier Science Publishers B.V. Amsterdam, 322 pp.
  17. Ofuya, T.I. and Akingbohungbe, A.E. (1988). Functional and numerical responses of Cheilomenes lunata (Fabricius) (Coleoptera: Coccinellidae) feeding on cowpea aphid, Aphis craccivora Koch (Homoptera: Aphididae). Insect Science Application. 9: 543-546.
  18. Omkar and Pervez, A. (2004). Predaceous coccinellids in India: Predator-prey catalogue. Oriental Insects. 38: 27-61.
  19. Pervez, A. and Omkar, (2005). Functional and numerical responses of Propylea dissecta (Mulsant) (Coleoptera: Coccinellidae). Journal of Applied Entomology. 128: 140-146.
  20. Sadeghi, A., Van-Damme, E.J.M. and Smagghe, G. (2009). Evaluation of the susceptibility of the pea aphid, Acyrthosiphon pisum, to a selection of novel biorational insecticides using an artificial diet. Journal of Insect Science. 9: 65.
  21. Smith, C.M. and Boyko, E.V. (2007). The molecular bases of plant resistance and defense responses to aphid feeding: Current status. Entomologia Experimentalis et Applicata. 122: 1-16.
  22. Solomon, M.E. (1949). The natural control of animal populations. Journal of Animal Ecology. 18: 1-35.
  23. Swaminathan, R., Meena, A. and Meena, B.M. (2016). Diversity and predation potential of major aphidophagous predators in maize. Applied Ecology and Environmental Research. 13(4): 1069-1084.
  24. Trexler, J.C., McCulloch, C.E. and Travis, J. (1988). How can the functional response best be determined? Oecology. 76: 206-214.
  25. Uygun, N. and Atlihan, R. (2000). The effect of temperature on development and fecundity of Scymnus levaillanti. Biocontrol. 45: 453-462.
  26. Weigand, S. and Bishara, S I. (1991). Status of Insect Pests of Faba Bean in the Mediteranean Region and Methods of Control. In: Present Status and Future Prospects of Faba Bean Production and Improvement in the Mediterranean Countries. [Cubero J.I., Saxena M.C. (eds.)]. Zaragoza: CIHEAM pp 67-74.
  27. Wells, M.L., McPherson, R.M., Ruberson, J.R. and Herzog, G.A. (2001). Coccinellids in cotton: Population response to pesticide application and feeding response to cotton aphids (Hemiptera: Aphididae). Journal of Environmental Entomology. 30: 785-793.

Global Footprints