​Advances in Molecular Breeding for Bruchid (Callosobruchus spp.) Resistance in Mungbean [Vigna radiata (L.) Wilczek]: A Review

DOI: 10.18805/LR-4695    | Article Id: LR-4695 | Page : 933-941
Citation :- ​Advances in Molecular Breeding for Bruchid (Callosobruchus spp.) Resistance in Mungbean [Vigna radiata (L.) Wilczek]: A Review.Legume Research.2022.(45):933-941
Prasanta Kumar Majhi, Tanmaya Kumar Bhoi, Suma C. Mogali, Aalok Shiv, Kishore Chandra Sahoo, Varun Saini prasantakumarmajhi53@gmail.com
Address : Department of Plant Breeding and Genetics, Odisha University of Agriculture and Technology, Regional Research and Technology Transfer Station, Keonjhar-758 002, Odisha, India.
Submitted Date : 14-06-2021
Accepted Date : 31-08-2021


Mungbean is one of the most important grain legumes with high-quality dietary protein in India as well in many other Asian countries. But the crop is severely affected by bruchids (Callosobruchus spp.) from field to storage condition. These storage pests not only affect the yield but also reduce the market value and quality of the crops. The chemical method of bruchid management is not economical and environmentally unsafe. So, the host-plant resistance to bruchids would be the best alternative and most sustainable way to control the bruchid. A very limited number of wild accessions and cultivated genotypes are available for the transfer of bruchid resistance gene through conventional breeding. Thus, insights into the molecular mechanism of resistance will help to find out the resistance genes/QTLs easily with the support of available genome sequence and that can be introgressed to the cultivated varieties through marker-assisted backcross breeding (MABB) approach. Therefore, in this review, we focused on QTL mapping, identification of novel QTLs, marker assisted-selection, genomics and transcriptomics study by using advanced molecular tools which will be very helpful for genomic-assisted breeding in mungbean for bruchid resistance.


​Bruchid Genomics Marker Mungbean QTLs Transcriptomics


  1. Anonymous. (2016). Pulses in India: Retrospect and Prospects. MoA and FW, Directorate of Pulse Development, Vindhyachal  Bhavan, Bhopal, M.P. (India). 23: 81-95.
  2. Bharathi, T.D., Krishnayya, P.V. and Madhumathi, T. (2017). Developmental Response of Callosobruchus maculatus and C. Chinensis on different Pulse host-grains. Chemical Science Review Letter. 6(22): 786-792.
  3. Chattopadhyay, K., Ali, N., Sarkar, H.K., Mandai, N. and Bhattacharyya, S. (2005). Diversity analysis by RAPD and ISSR markers among the selected mungbean genotypes. Indian Journal of Genetics and Plant Breeding. 65: 173-175.
  4. Chen, H.M., Ku, H.M., Schafleitner, R., Bains, T.S., Kuo, C.G., Liu, C.A., et al., (2013). The major quantitative trait locus for mungbean yellow mosaic Indian virus resistance is tightly linked in repulsion phase to the major bruchid resistance locus in a cross between mungbean and its wild relative Vigna radiata ssp. sublobata. Euphytica. 192: 205-216. 
  5. Chen, H.M., Liu, C.A., Kuo, C.G, Chien, C.M., Sun, H.C., Huang, C.C. et al. (2007). Development of a molecular marker for a bruchid (Callosobruchus chinensis L.) resistance gene in mungbean. Euphytica. 157(1-2): 113-22. 
  6. Chen, K.C., Lin, C.Y., Kuan, C.C., Sung, H.Y. and Chen, C.S., (2002). A novel defensin encoded by a mungbean cDNA exhibits insecticidal activity against bruchids. Journal of Agriculture  and Food Chemistry. 50: 7258-7263. 
  7. Chotechung, S., Somta, P., Chankaew, S., Srinives, P. and Somta, P. (2011). Identification of DNA markers associated with bruchid resistance in mungbean. Khon Khan Agriculture Journal. 39: 221-226. 
  8. Chotechung, S., Somta, P., Chen, J., Yimram, T., Chen, X. and Srinives, P. (2016). A gene encoding a polygalacturonase- inhibiting protein (PGIP) is a candidate gene for bruchid resistance in mungbean. Theory and Applied Genetics. 129: 1673-1683. 
  9. Doss, R.P., Oliver, J.E., Proebsting, W.M., Potter, S.W., Kuy, S.R., Clement, S.L., et al. (2000). Bruchins: Insect Derived Plant Regulators that Stimulate Neoplasm Formation. Proceedings of National Academy of Science. U.S.A. 97: 6218-6223. 
  10. Edwards, O. and Singh K.B. (2006). Resistance to insect pests: What do legumes have to offer? Euphytica. 147(1-2): 273-85.
  11. Gbaye, O.A., Millard, J.C. and Holloway, G.J. (2011). Legume type and temperature effects on the toxicity of insecticide to the genus Callosobruchus. Journal of Stored Prod Research. 47(1): 8-12. 
  12. Hong, M.G., Kim, K.H., Ku, J.H., Jeong, J.K., Seo, M.J., Park, C.H., et al. (2015). Inheritance and quantitative trait loci analysis of resistance genes to bruchid and bean bug in mungbean. Plant Breeding and Biotechnology. 3: 39-46. 
  13. Ishimoto, M. and Kitamura, K. (1993). Inhibitory Effects of adzuki bean weevilresistant mungbean seeds on growth of the bean bug. Japanese Journal of Breeding. 43(1): 75-80. 
  14. Kaewwongwal, A., Chen, J., Somta, P., Kongjaimun, A., Yimram, T., Chen, X. and Srinives, P. (2017). Novel alleles of two tightly linked genes encoding polygalacturonase-inhibiting proteins (VrPGIP1 and VrPGIP2) associated with the Br locus that confer bruchid resistance to mungbean accession V2709. Frontiers in Plant Science. 8: 1692. 
  15. Kaga, A. and Ishimoto, M. (1998). Genetic localization of a bruchid resistance gene and its relationship to insecticidal cyclopeptide alkaloids, the vignatic acids, in mungbean. Molecular and General Genetics. 258: 378-384. 
  16. Kang, Y.J., Kim, S.K., Kim, M.Y., Lestari, P., Kim, K.H., Ha, B.K., et al. (2014). Genome sequence of mungbean and insights into evolution within Vigna species. Nature Communication. 11(5): 5443. 
  17. Khan, M.M.K., Khan, A., Ishimoto, M., Kitamura, K. and Komatsu, S. (2003). Proteome analysis of the relationship between bruchid-resistant and susceptible mungbean genotypes. Plant Genetic Resources. 1(2-3): 115-23.
  18. Landerito, E.O., Mendoza, E.M.T., Laurena, A.C. and Garcia, R.N. (1993). Physicochemical and biochemical factors in mungbean and black gram associated with bruchid resistance. Philippines Journal of Crop Science. 18: 163.
  19. Lattanzio, V., Terzano, R., Cicco, N., Cardinali, A., Di Venere, D. and Linsalata, V. (2005). Seed coat tannins and bruchid resistance in stored cowpea seeds. Journal of the Science of Food and Agriculture. 85: 839-846. 
  20. Leite, Y.F.M., Silva, L.M.C.M., Amorim, R.C.N., Freire, E.A., Jorge, D.M.M., Grangeiro, T.B., et al., (2005). Purification of a lectin from the marine red alga Gracilaria ornata and its effect on the development of the cowpea weevil Callosobruchus maculatus. Biochim Biophys Acta. 1724: 137-145. 
  21. Li, H., Ye, G. and Wang, J. (2007). A modified algorithm for the improvement of composite interval mapping. Genetics. 175: 361-374. 
  22. Macedo, M.L., Freire, M.D.G.M., Da Silvam, M.B. and Coelho, L.C. (2007). Insecticidal action of Bauhinia monandra leaf lectin (BmoLL) against Anagasta kuehniella, Zabrotes subfasciatus and Callosobruchus maculatus. Comparative Biochemistry and Physiology -Part A: Molecular and  Integrative Physiology. 146: 486-498. 
  23. Majhi, P.K. and Mogali, S.C. (2020). Characterization and Selection of Bruchid [Callosobruchus maculatus (F.)] Tolerant Greengram [Vigna radiata (L.) Wilczek] Genotype. Indian Journal of Agricultural Research. 54: 679-688. 
  24. Mao-Sen, L., Tony, C.Y.K., Chia-Yun, K., Dung-Chi, W., Kuan-Y., Wu-Jui, L., Ching-Ping, L., Yen-Wei, W., Roland, S., Hsiao-Feng, L., Chien-Yu, C. and Long-Fang, O.C. (2016). Genomic and transcriptomic comparison of nucleotide variations for insights into bruchid resistance of mungbean. BMC Plant Biology. 16(46): 1-16.
  25. Mathivathana, M.K., Murukarthick, J, Karthikeyan, A., Jang, W., Dhasarathan, M., Jagadeeshselvam, N., Sudha, M., Vanniarajan, C., Karthikeyan, G., Yang, T.J., Raveendran, M., Pandiyan, M. and Senthil, N. (2019). Detection of QTLs associated with mungbean yellow mosaic virus (MYMV) resistance using the interspecific cross of Vigna radiata × Vigna umbellata. Journal of Applied Genetics. 60(3-4): 255-268. 
  26. Meng, L., Li, H., Zhang, L. and Wang, J. (2015). QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop Journal. 3: 269-283. 
  27. Oliveira, A.E.A., Sales, M.P., Machado, O.L.T., Fernandes, K.V.S., and Xavier-Filho, J. (1999). The toxicity of the jack bean cotyledonary and testa proteins to the cowpea weevil. Entomologia Experimentalis et Applicata. 92: 249-255. 
  28. Pandiyan, M., Senthil, N., Ramamoorthi, N., Muthiah, A.R., Tomooka, N., Duncan, V., et al. (2020). Interspecific hybridization of Vigna radiata × 13 wild Vigna species for developing MYMV donar. Electronic Journal of Plant Breeding. 1: 600-610.
  29. Petzold-Maxwell, J., Wong, S., Arellano, C. and Gould, F. (2011). Host plant direct defense against eggs of its specialist herbivore, Heliothis subflexa. Ecology and Entomology. 36: 700-708. 
  30. Sanhita, G., Anindita, R. and Sabyasachi, K. (2019). Diversity analysis of mungbean [Vigna radiata (L.) Wilczek] genotypes for bruchid resistance. Indian Journal of Agricultural Research. 53(3): 309-314.
  31. Sarikarin, N., Srinives, P., Kaveeta, R. and Saksoong, P. (1999). Effect of seed texture layer on bruchid infestation in mungbean. Science Asia. 25: 203-206. 
  32. Sarkar, S. and Bhattacharyya. S. (2015). Screening of greengram genotypes for bruchid (Callosobruchus chinensis L.) resistance and selection of parental lines for hybridization programme. Legume Research. 38(5): 704-706.
  33. Schafleitner, R., Huang, S.M., Chu, S.H., Yen, J.Y., Lin, C.Y., Yan, M.R., et al. (2016). Identification of single nucleotide polymorphism markers associated with resistance to bruchids (Callosobruchus spp.) in wild mungbean and cultivated V. radiata through genotyping by sequencing and quantitative trait locus analysis. BMC Plant Biology. 16: 159. 
  34. Somta, C., Somta, P., Tomooka, N., Ooi, P.A.C., Vaughan, D.A. and Srinives, P. (2008). Characterization of new sources of mungbean resistance to bruchids. Journal of Stored Product Research. 44: 316-321. 
  35. Somta, P., Ammaranan, C., Ooi, P.A.C. and Srinives, P. (2007). Inheritance of seed resistance to bruchids in cultivated mungbean. Euphytica. 155: 47-55. 
  36. Suseelan, K.N., Bhatia, C.R. and Mitra, R. (1997). Characteristics of two major lectins from mungbean seeds. Plant Food Human Nutrition. 50: 211-222. 
  37. Tripathy, S.K. (2016). Bruchid resistance in food legumes-An overview. Research Journal of Biotechnology. 7: 98-105.
  38. Vandenborre, G., Smagghe, G. and Van Damme, E.J.M. (2011). Plant lectins as defense proteins against phytophagous insects. Phytochemistry. 72: 1538-1550. 
  39. War, A.R., Hussain, B. and Sharma, H.C. (2013). Induced resistance in groundnut by jasmonic acid and salicylic acid through alteration of trichome density and oviposition by Helicoverpa armigera. AoB Plants. 5: 53. 
  40. War, A.R., Murugesan, S., Boddepalli, V.N., Srinivasan, R. and Nair, R.M. (2017). Mechanism of resistance in mungbean to bruchids, Callosobruchus spp. Frontiers in Plant Science. 8: 1031. 
  41. War, A.R., Paulraj, M.G. Ahmad, T., Buhroo, A.A., Hussain, B., Ignacimuthu, S., et al. (2012). Mechanisms of plant defense against insect herbivores. Plant Signaling and Behaviour. 7: 1306-1320. 
  42. Watt, E.E., Poehlman, J.M. and Cumbie, B.G. (1977). Origin and composition of texture layer on seed of mungbean. Crop Science. 17: 121-125. 
  43. Wisessing, A., Engkagul, A., Wongpiyasatid, A. and Chuwongkomon, K. (2008). Proteomic and characterization of á-amylase inhibitor from mungbean. Kasetsart Journal. 42: 245-225.
  44. Young, N.D., Kumar, L., Menancio-Hautea, D., Danesh, D., Talekar, N.S., Shanmugasundaram, S., et al. (1992). RFLP mapping of a major bruchid resistance gene in mungbean. Theory and Applied Genetics. 84: 839-844. 

Global Footprints