Transferability of newly developed genomic lentil SSR markers to Cicer species

DOI: 10.18805/LR-466    | Article Id: LR-466 | Page : 479-484
Citation :- Transferability of newly developed genomic lentil SSR markers to Cicer species.Legume Research-An International Journal.2019.(42):479-484
Melike Bakır melikecu@gmail.com
Address : Department of Agricultural Biotechnology, Erciyes University, Faculty of Agriculture, Kayseri 38039, Turkey.
Submitted Date : 19-11-2018
Accepted Date : 12-07-2019

Abstract

Development of microsatellite markers requires a great effort, expertise and research infrastructure. Therefore, cross genera or species transferability of already developed markers has constituted a significant alternative. In this study, transferability of newly developed 53 genomic lentil (Lens culinaris Medik.) SSR markers to 32 accessions of Cicer species including C. arietinum L., C. bijugum K.H. Rech., C. echinospermum P.H. Davis, C. reticulatum Ladiz., C. pinnatifidium Jaub. & Sp., C. anatolicum Alef. was investigated. Of these markers, 33.09% were found to be transferrable to C. arietinum, 37.7% to C. echinospermum, 35.8% to C.reticulatum, 39.6% to C. bijugum, 18.8% to C. pinnatifidium and finally 15.09% to C. anatolicum species. From these markers, 11.3% were found to be transferable to all Cicer species.  Transferable 6 polymorphic SSR primers had 19 alleles in 32 accessions with a mean of 3.16 alleles per locus. Polymorphic information content (PIC) values varied between 0.375 (Lc_MCu21) and 0.587 (Lc_MCu53) with an average value of 0.528. Transferable SSR markers were thought to provide significant contributions to inter and intra-specific studies in Cicer species.

Keywords

Chickpea Cicer Cross-transferability Lens Microsatellites SSRs

References

  1. Bakır, M. and Kahraman, A. (2019). Development of New SSR (Simple Sequence Repeat) Markers for Lentils (Lens culinaris Medik.) from Genomic Library Enriched with AG and AC Microsatellites. Biochem Genetics, 57:338-353.
  2. Baquerizo-Audiot, E., Desplanque, B., Prosperi, J.M., Santoni, S. (2001). Characterization of microsatellite loci in the diploid legume Medicago truncatula (barrel medic). Molecular Ecology Notes, 1:1–3.
  3. Choudhary, S., Gaur, R., Gupta, S., Bhatia, S. (2012). EST-derived genic molecular markers: development and utilization for generating an advanced transcript map of chickpea. Theoretical Apply Genetics, 124: 1449– 1462.
  4. Choudhary, S., Sethy, N.K., Shokeen, B., Bhatia, S. (2009). Development of chickpea EST-SSR markers and analysis of allelic variation across related species. Theoretical Apply Genetics, 118:591-608.
  5. Choumane, W., Winter, P., Weigand, F., Kahl, G. (2004). Conservation of microsatellite flanking sequences in different taxa of leguminosae. Euphytica, 138: 239-245.
  6. Cipriani, G., Lot, G., Huang, W.G., Marrazzo, M.T., Peterlunger, E., Testolin, R. (1999). AC/GT and AG/CT microsatellite repeats in peach [Prunus persica (L) Batsch]: Isolation, characterisation and crossspecies amplification in Prunus. Theoretical Apply Genetics, 99:65–72.
  7. Datta, S., Kaashyap, M., Kumar, S. (2010b). Amplification of chickpea-specific SSR primers in Cajanus species and their validity in diversity analysis. Plant Breeding, http\\doi.org\10.1111/j.1439-0523.2009.01678.x
  8. Datta, S., Mahfooz, S., Singh, P., Choudhary, A.K., Singh, F., Kumar, S. (2010a). Cross-genera amplification of informative microsatellite markers from common bean and lentil for the assessment of genetic diversity in pigeonpea. Physiology and Molecular Biology of Plants, 16:123–134.
  9. Decroocq, V., Fave, M.G., Hagen, L., Bordenave, L., Decroocq, S. (2003). Development and transferability of apricot and grape EST microsatellite markers across taxa. Theoretical Apply Genetics, 106:912– 922.
  10. Dirlewanger, E., Cosson, P., Tavaud, M., Aranzana, M.J., Poizat, C., Zanetto, A., Arús, P., Laigret, F. (2002). Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theoretical Apply Genetics, 105:127–138.
  11. Downey, L.D. and Lezzoni, A.F. (2000). Polymorphic DNA markers in black cherry (Prunus serotina) are identified using sequences from sweet cherry, peach, and sour cherry. Journal of American Society and Horticultural Science, 125:76-80.
  12. Erpelding, J.E., Blake, N.K., Blake, T.K., Talbert, L.E. (1996). Transfer of sequence-tagged site PCR markers between wheat and barley. Genome, 39:802-810.
  13. Eujayl, I., Sorrells, M., Baum, M., Wolters, P., Powell, W. (2002). Isolation of EST-derived microsatellite markers for genotyping of the A and B genomes of wheat. Theoretical Apply Genetics, 104:399—407.
  14. Gaur, R., Sethy, N.K., Choudhary, S., Shokeen, B., Gupta, V., Bhatia, S., et al. (2011). Advancing the STMS genomic resources for defining new locations on the intra-specific genetic linkage map of chickpea (Cicer arietinum L.). BMC Genomics, 12:117.
  15. Gujaria, N., Kumar, A., Dauthal, P., Dubey, A., Hiremath, P., Bhanu Prakash A., et al. (2011). Development and use of genic molecular markers (GMMs) for construction of a transcript map of chickpea (Cicer arietinum L.). Theoretical Apply Genetics, 122: 1577–1589.
  16. Gupta, R.C., Kaur, K., Kataria, V. (2016). Meiotic chromosomal studies in family Zygophyllaceae R. Br. from Rajasthan. Indian Journal of Genetics and Plant Breeding, 76:111–115.
  17. Gupta, S., Nawaz, K., Parween, S., Roy, R., Sahu, K., Pole, A.K., Khandal, H., Srivastava, R., Parida, S.K., Chattopadhyay, D. (2017). Draft genome sequence of Cicer reticulatum L., the wild progenitor of chickpea provides a resource for agronomic trait improvement. DNA Research, 24: 1–10.
  18. Gupta, S.K. and Gopalakrishna, T. (2010). Development of unigenederived SSR markers in cowpea (Vigna unguiculata) and their transferability to other Vigna species. Genome, 53: 508-523.
  19. Gurcan, K. and Mehlenbacher, S. (2010). Transferability of Microsatellite Markers in the Betulaceae”, Journal of The American Society for Horticultural Science, 135:159-173.
  20. Gutierrez, M.V., Vaz Patto, M.C., Huguet, T., Cubero, J.I., Moreno, M.T, Torres, A.M. (2005). Cross-species amplification of Medicago truncatula microsatellites across three major pulse crops. Theoretical Apply Genetics, 110:1210–1217.
  21. Hempel, K. and Peakall, R. (2003). Cross-species amplification from crop soybean Glycine max provides informative microsatellite markers for the study of inbreeding wild relatives. Genome, 46:382–393
  22. Hendre, P.S. and Aggarwal, R.K. (2007). DNA Markers: Development and Application for Genetic Improvement of Coffee. In: Genomics-    Assisted Crop Improvement. [Varshney RK, Tuberosa R. (ed)] Springer, Dordrecht, p 399–434.
  23. Hiremath, P.J., Farmer, A., Cannon, S.B., Woodward, J., Kudapa, H., Tuteja, R., et al. (2011). Large-scale transcriptome analysis in chickpea (Cicer arietinum L.), an orphan legume crop of the semi-arid tropics of Asia and Africa. Plant Biotechnology Journal, 9: 922–931. 
  24. Jain, M., Misra, G., Patel, R.K., Priya, P., Jhanwar, S., Khan, A.W., et al. (2013). A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). Plant Journal, 74: 715–729. 
  25. Jha, U., Chandra, K., Paresh, P., Singh, N. (2019). QTL mapping for heat stress tolerance in chickpea (Cicer arietinum L.). Legume Research-An Internatýonal Journal 10.18805/LR-4121.
  26. Jhanwar, S., Priya, P., Garg, R., Parida, S.K., Tyagi, A.K., Jain, M. (2012). Transcriptome sequencing of wild chickpea as a rich resource for marker development. Plant Biotechnology Journal, 10:690–702.
  27. Lefort, F., Lally, M., Thompson, D., Douglas, G.C. (1998). Morphological traits, microsatellite fingerprinting and genetic relatedness of a stand of elite oaks (Q. robur L.) at Tullynally, Ireland. Silvae Genetica, 47:5-6.
  28. Liu, K. and Muse, S.V. (2005). PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics, 21:2128-2129.
  29. Nayak, S.N., Zhu, H., Varghese, N., Datta, S., Choi, H.K., Horres, R., et al. (2010). Integration of novel SSR and gene-based SNP marker loci in the chickpea genetic map and establishment of new anchor points with Medicago truncatula genome. Theoretical Apply Genetics, 120: 1415–1441. 
  30. Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences. 70:3321-3323.
  31. Pandian, A., Ford, R., Taylor, W.J. (2000). Transferability of sequence tagged microsatellite sites (STMS) primers across major pulses. Plant Molecular Biology Reports, 18:395-395.
  32. Peakall, R., Gilmore, S., Keys, W., Morgante, M., Rafalski, A. (1998). Cross-species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera: implications for the transferability of SSRs in plants. Molecular Biology and Evolution, 15:1275-1287.
  33. Powell, W., Mackray, G.C., Provan, J. (1996). Polymorphism revealed by simple sequence repeats. Trends in Plant Science, 1:215– 222.
  34. Reddy, M.R.K., Rathour, R., Kumar, N., Katoch, P., Sharma, T.R. (2010). Cross-genera legume SSR markers for analysis of genetic diversity in Lens species. Plant Breeding, 129:51-518. 
  35. Rialch, I., Kalia, R., Chaudhary, H., Kumar, B.C., Bhandari, J.K., Sood, V. (2018). Comparative analysis of diversity based on morpho-    metric and molecular markers in chickpea over different environments. Legume Research-An International Journal, 10.18805/    LR-3907.
  36. Roa, A.C., Chavarriaga-Aguirre, P., Duque, M.C., Maya, M.M., Bonierbale, M.W., Iglesias, C., Tohme, J. (2000). Cross-species amplification of cassava (Manihot esculenta) (Euphorbiaceae) microsatellites: allelic polymorphism and degree of relationship. American Journal of Botany, 87:1647–1655.
  37. Rossetto, M. (2001). Sourcing of SSR markers from related plant species. In: Plant genotyping: the DNA fingerprinting of plants. [Henry RJ (ed)] CABI Publishers, New York, N.Y. pp. 211–224.
  38. Rossetto, M., McNally, J., Henry, R.J. (2002). Evaluating the potential of SSR flanking regions for examining taxonomic relationships in the Vitaceae. Theoretical Apply Genetics, 104:61–66.
  39. Schuelke, M. (2000). An Economic Method for the Fluorescent Labelling of PCR Fragments. Nature Biotechnogy, 18:233-234.
  40. Sethy, N.K., Shokeen, B., Edwards, K.J., Bhatia, S. (2006). Development of microsatellite markers and analysis of intra-specific genetic variability in chickpea (Cicer arietinum L.). Theoretical Apply Genetics, 112: 1416– 1428.
  41. Shivakumar, M.S., Ramesh, S., Mohan Rao, A., Udaykumar, H.R., Keerthi, C.M. (2017). Cross legume species/genera transferability of SSR Markers and their utility in assessing polymorphism among advanced breeding lines in dolichos bean (Lablab purpureus L.). International Journal of Current Microbiology Applied Sciences, 6:656-668.
  42. Smykal, P., Coyne, C.J., Ambrose, M.J., Maxted, N., Schaefer, H., Blair, M.W., Berger, J., Greene, S.L., et al. (2015). Legume crops phylogeny and genetic diversity for science and breeding. Critical Reviews in Plant Sciences, 34: 43-104.
  43. Sosinski, B., Gannavarapu, M., Hager, L.D., Beck, L.E., King, G.J., Ryder, C.D., Rajapakse, S., et al. (2000). Characterization of microsatellite markers in peach [Prunus persica (L) Batsch]. Theoretical Apply Genetics, 101:421–428.
  44. Suman, S., Rani, B., Sharma, V., Kumar, H. (2018). SSR marker based profiling and diversity analysis of mungbean [Vigna radiata (L.) Wilczek] genotypes. Legume Research-An Internatýonal Journal 10.18805/LR-3918.
  45. Tamura, K., Dudley, J., Nei, M., Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24:1596-1599.

Global Footprints