Dry matter yield and nitrogen content in Lupinus spp. (Leguminosae) with potential as a green manure

DOI: 10.18805/LR-436    | Article Id: LR-436 | Page : 523-527
Citation :- Dry matter yield and nitrogen content in Lupinus spp. (Leguminosae) with potential as a green manure.Legume Research-An International Journal.2019.(42):523-527
I. Zapata Hernández, R. Rodríguez Macías, P.M. García López, E. Salcedo Perez, A.H. Lara Rivera and J.F. Zamora Natera
jfzamora@cucba.udg.mx
Address : Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara. Camino Ing. Ramón Padilla Sánchez No 2100, C.P. 45510. Nextipac, Zapopan, Jalisco, México.
Submitted Date : 5-06-2018
Accepted Date : 17-01-2019

Abstract

The potential of Lupinus exaltatus, L. mexicanus, and L. rotundiflorus foliage as green manure in terms of total dry matter production and nitrogen (N) content was evaluated. This study was conducted from November 2015 to March 2016 in Zapopan Jalisco, México. The experiment was established in a randomized 3×7 block factorial design. Whole plants, leaves and stems were collected at different periods after sowing and analyzed for N and dry matter content. At the start of the experimental period, a slow growth was observed, based on dry matter production; however, at 93 days after sowing, both biomass and total N increased in the aerial part. The lowest and highest N content was found in L. rotundiflorus (1.2 to 4.0%).The highest dry matter and N accumulated in whole plants were found in L. exaltatus at 169 days after sowing with 21,605 and 410.6 kg ha-1, respectively.

Keywords

Nitrogen Lupinus L. exaltatus L. mexicanus L. rotundiflorus

References

  1. Aionouche, A.K. and Bayer, R.J. (1999). Phylogenetic relationships in Lupinus (Fabaceae: Papilionoideae) based on internal transcribed spacer sequences (ITS) of nuclear ribosomal DNA. Amer. J. Bot. 86: 590–607.
  2. Björnsson, H. and Dalmannsdóttir, S. (2004). Yield potential of Nootka lupin. In: Wild and Cultivated Lupins from the Tropics to the Poles. Proceedings of the 10th International Lupin Conference, Laugarvatn, Iceland, 19-24 June 2002, 97–100.
  3. Carlsson, G. and Huss-Danell, K. (2003). N fixation in perennial forage legumes in the field. Plant Soil. 253: 353–372.
  4. Díaz-Rodríguez, B., del-Val, E., Gómez-Romero, M, Gómez-Ruiz, P.A. and Lindig-Cisneros, R. (2013). Conditions for establishment of a key restoration species, Lupinus elegans Kunth, in a Mexican temperate forest. Bot Sci. 91(2): 225-232. 
  5. Gan, Y.T., Campbell, C.A., Jansen H.H., Lemke R.L., Basnyat P. and McDonald, C.L. (2010). N accumulation in plant tissues and roots and N mineralization under oilseeds, pulses, and spring wheat. Plant Soil. 332: 451-461.
  6. Gastal, F. and Lemaire G. (2002). N uptake and distribution in crops: an agronomical and ecophysiological perspective. J Exp Bot. 53(370): 789–799.
  7. Gladstones, J S. (1974). Lupins of the Mediterranean region and Africa. DAFWA.Tech Bull 26: 1-48.
  8. Goergen E., Jeanne C. Chambers, Robert Blank. (2009). Effects of water and N availability on N contribution by the legume, Lupinus argenteus Pursh. Appl Soil Ecol. 42: 200-208.
  9. Goergen, Erin M. (2009). The role of symbiotic N fixation in N availability, competition and plant invasion into the sagebrush steppe. Reno, NV: University of Nevada, Reno. 185 p. Dissertation.
  10. Herrera, J., Isaac, M., Rodríguez, R., Zamora, J.F., Ruíz, M.A., y García, P.M. (2010). Conservación del forraje de Lupinus rotundiflorus M.E. Jones y Lupinus exaltatus Zucc. Mediante ensilaje. Interciencia. 35 (8): 592-599.
  11. Kamboj, R. and Nanda, V. (2017). Proximate composition, nutritional profile and health benefits of legumes: A review. Legume Res. 41(3): 325-332.
  12. Kitessa, S. M. (1992): The nutritional value of Russell lupin (Lupinus polyphyllus × Lupinus arboreus) for sheep. Unpublished MAgrSc thesis, Lincoln University, Lincoln, New Zealand.
  13. Lemus L., O., Herrera E., E. y Jiménez C., T. (1986). La tsirangeramani (Lupinus spp.) en la Meseta Purepecha. Serie Contribuciones. Dirección General de Culturas Populares. Uruapan, Michoacán. 42 p.
  14. Magnússon, B., Magnússon, S.H. and Sigurðsson, B.D. (2004). Plant succession in areas colonized by the introduced Nootka lupin in Iceland. In: van Santen, E. and Hill, G.D. (eds.): Wild and Cultivated Lupins from the Tropics to the Poles. Proceedings of the 10th International Lupin Conference, Laugarvatn, Iceland, 19 – 24 June 2002. Publ. International Lupin Association, Canterbury, New Zealand, pp. 170–177. 
  15. McNeill, A.M. and Fillery, I.R.P. (2008). Field measurement of lupin belowground N accumulation and recovery in the subsequent cereal-soil system in a semi-arid Mediterranean-type climate. Plant Soil. 302 (1-2): 297-316.
  16. Medina-Sanchez E. y R. Lindig-Cisneros (2005). Effect of scarification and growing media on seed germination of Lupinus elegans H. B. K. Seed Sci. Technol. 33: 237-241.
  17. Peoples, M. B., and Craswell, E. T. (1992). Biological N fixation: investments, expectations and actual contributions to agriculture. Plant soil. 141 (1-2): 13-39.
  18. Prusiñski J. (2014). Dynamics and distribution of dry matter and total N in yellow lupine (Lupinus luteus L.) plants. Electronic Journal of Polish Agricultural Universities. 7(2):1-11.
  19. Ramírez-Contreras, A., Rodríguez-Trejo, D.A. (2009). Plantas nodriza en la reforestación con Pinus hartwegii Lindl. Rev. Chapingo ser. cienc. 15 (1): 43-48.
  20. Randhawa, P.S., Condron, L.M., Di, H.G., Sinaj, S., McLenaghen, R.D. (2005). Effect of green manure addition on soil organic phosphorus mineralization. Nutr Cycl Agr oecosyst. 73: 181–189.
  21. Russell C.A. and Fillery I.R.P. (1996) Estimates of lupin below ground biomass nitrogen, dry matter, and nitrogen turnover to wheat, Aust. J. Agr. Resour. Ec. 47: 1047–1059.
  22. Schulz, S., Keatinge, J., Wells, G., (1999). Productivity and residual effects of legumes in rice-based cropping systems in a warm temperate environment I. Legume biomass production and N fixation. Field Crops Res. 61: 23-35.
  23. Sprent, J.I. and Silvester, W.B. (1973). N fixation by Lupinus arboreus grown in the open and under different aged stands of Pinus radiata. New Phytol. 72: 991-1003.
  24. Van Kessel, C. (1994). Seasonal accumulation and partitioning of N by lentil. Plant Soil. 164(1): 69-76.
  25. Younis, M., (2002). Nodulation and N fixation by Lupinus varius L. a wild type of lupine grown in the Southern part of the Eastern desert of Egypt under different water regimes. J. Biological Sci. 2: 596-600.
  26. Yang, J.Y., C.F. Drury, X.M. Yang, R. De Jong, E.C. Huffman, C.A. Campbell, Kirkwood V. (2010). Estimating biological N2 fixation in Canadian agricultural land using legume yields. Agriculture, Ecosystems & Environment. 137: 192–201.
  27. Zamora, Natera, F., Martínez Rodríguez, M., Ruiz López, M., García López, P. (2002). Rendimiento y composición química del fo
  28. rraje de Huizachillo (Desmanthus virgatus L. var. depressus Willd) bajo condiciones de cultivo. Rev Fitotec Mex. 25 (3): 317-320.
  29. Zamora, Natera J.F, del Rio Obregón C., Zapata Hernández I., Rodríguez Macías R. García López P.M. (2017). Preliminary estimation of forage yield and feeding value of Lupinus angustifolius varieties cultivated in Jalisco, México, during the cool season. Legume Res.40 (6): 1060-1065.
  30. Zebire, D.A. and Hirpa, G. D. (2016). Effect of sowing density on number of tiller, ground cover and dry matter yield production of two green manure crops, winter rye (Secale cereale L.) and lolium mix. Indian Journal of Agricultural Research. 50(5): 475-478. 

Global Footprints