Loading...

Genome-wide Analysis of WRKY Transcription Factors Family in Chickpea (Cicer arietinum L.)

DOI: 10.18805/LR-4352    | Article Id: LR-4352 | Page : 700-710
Citation :- Genome-wide Analysis of WRKY Transcription Factors Family in Chickpea (Cicer arietinum L.).Legume Research.2022.(45):700-710
Rajendra Tukaram Shende, Reeva Singh, Arun Kumar, Rakesh Singh Sengar rajendrashende7@gmail.com
Address : Department of Agricultural Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut-250 110, Uttar Pradesh, India.
Submitted Date : 17-02-2020
Accepted Date : 29-10-2020

Abstract

Background: Chickpea (Cicer arietinum L.) is used as a protein source across the world. In plants WRKY transcription factors play an important role in regulation of stress resistance. An attempt was made to analyze WRKY genes in chickpea using genomic data.
Methods: In this In Silico investigation during 2018-2019, to analyze the WRKY genes in chickpea using genomic data. iTak database are used to obtain gene data. Bioinformatics tools were used to analyzed the chickpea genomic data.
Result: This study reported 61 Car WRKY genes, located on the seven main chromosomes of chickpea. Great variations were reported in terms of protein length, molecular weight, grand average of hydropathicity (GRAVY) value and theoretical isoelectric points of Car WRKYs. Gene Structure Display Server (GSDS) demonstrated that the Car WRKY 56 gene lack introns. Phylogenetic analysis of Car WRKY proteins divided in three main groups (I, II and III); group II was divided into three subgroups like IIa, IIb and IIc. By this an attempt has made to provide novel information on Car WRKY genes to study abiotic stress mechanism in chickpea.

Keywords

Chickpea GRAVY Phylogenetic analysis WRKY Transcription factors

References

  1. Acharjee, S., Sarmah, B.K. (2013). Biotechnologically generating ‘super chickpea’ for food and nutritional security. Plant Sci. 207: 108-116.
  2. Agarwal, P., Reddy, M.P., Chikara, J. (2011). WRKY: its structure, evolutionary relationship, DNA-binding selectivity, role in stress tolerance and development of plants. Mol. Biol. Rep. 38: 3883-3896.
  3. Chen, L., Song, Y., L.i, S., Zhang, L., Zou, C., Yu, D. (2012). The role of WRKY transcription factors in plant abiotic stresses, Biochimica et Biophysica Acta. 1819: 120-128. 
  4. Chen, M., Tan, Q.P., Sun, M.Y., Li, D.M., Fu, X.L., Chen, XD., Xiao, W., Li, L., Gao, DS. (2016). Genome-wide identification of WRKY family genes in peach and analysis of WRKY expression during bud dormancy. Mol. Genet. Genomics. 291: 1319-332.
  5. Ciolkowski, I., Wanke, D., Birkenbihl, R.P., Somssich, I.E. (2008). Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function. Plant Mol. Biol. 68: 81-92. 10.1007/s11103-008-9353-1.
  6. Cormack, R.S., Eulgem, T., Rushton, P.J., Kochner, P., Hahlbrock, K., Somssich, I.E. (2002). Leucine zipper-containing WRKY proteins widen the spectrum of immediate early elicitor-induced WRKY transcription factors in parsley. Biochim. Biophys. Acta. 1576: 92-100.
  7. Drews, O., Reil, G., Parlar, H., Gorg, A. (2004). Setting up standards and a reference map for the alkaline proteome of the gram-positive bacterium Lactococcus lactis. Proteomics 4: 1293-1304.
  8. Duan, M.R., Nan, J., Liang, Y.H., Mao, P., Lu, L., Li, L., Wei, C., Lai, L., Li, Y., Su, X.D. (2007). DNA binding mechanism revealed by high resolution crystal structure of Arabidopsis thaliana WRKY1 protein. Nucleic Acids Res. 35: 1145-1154. 10.1093/nar/gkm001.
  9. Eulgem, T., Rushton, P.J., Robatzek, S., Somssich, I.E. (2000). The WRKY superfamily of plant transcription factors. Trends Plant Sci. 5: 199-206 10.1016/S1360-1385(00)01600-9.
  10. Finn, R.D., Tate, J., Mistry, J., Coggill, P.C., Sammut, S.J., Hotz, H.R., Ceric, G., Forslund, K., Eddy, S.R., Sonnhammer, E.L.L., Bateman, A. (2008). The Pfam protein families database. Nucleic Acids Res. 36: D281-D288.
  11. Guo, C., Guo, R., Xu, X., Gao, M., Li, X., Song, J., Wang, X.P. (2014). Evolution and expression analysis of the grape (Vitis vinifera L.) WRKY gene family. J. Exp. Bot. 65: 1513-1528.
  12. Han, Y., Gasic, K., Marron, B., Beever, J.E., Korban, S.S. (2007). A BAC based physical map of the apple genome. Genomics. 89: 630-637.
  13. He, H.S., Dong, Q., Shao, Y.H., Jiang, H.Y., Zhu, S.W., Cheng, B.J., Xiang, Y. (2012). Genome-wide survey and characterization of the WRKY gene family in Populus trichocarpa. Plant Cell. Rep. 31: 1199-1217.
  14. Hu, B., Jin, J., Guo, A., Zhang, H., Luo, J., Gao, G. (2015). GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31: 1296-1297.
  15. Huang, S., Ding, J., Deng, D., Tang, W., Sun, H., Liu, D., Zhang, L., Niu, X., et al. (2013). Draft genome of the kiwifruit Actinidia chinensis. Nat. Commun. 4: 2640.
  16. Huang, S., Li, R., Zhang, Z., Li, L., Gu, X., Fan, W., Lucas, W.J., et al. (2009). The genome of the cucumber, Cucumis sativus L. Nat. Genet. 41: 1275-1281.
  17. Huang, S.X., Gao, Y.F., Liu, J.K, Peng, X.L., Niu, X.L., Fei, Z.J., Cao, S.Q., Liu, Y.S. (2012). Genome-wide analysis of WRKY transcription factors in Solanum lycopersicum. Mol. Genet. Genom. 287: 495-513.
  18. Ishiguro, S., Nakamura, K. (1994). Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5′ upstream regions of genes coding for sporamin and β-amylase from sweet potato. Mol. Gen. Genet. 244: 563-571.
  19. Jaillon, O., Aury, J.M., Noel, B., Policriti, A., Clepet, C., Casagrande, A. (2007). The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature. 449: 463-467.
  20. Jing, Z., Liu, Z. (2018). Genome-wide identification of WRKY transcription factors in kiwifruit (Actinidia spp.) and analysis of WRKY expression in responses to biotic and abiotic stresses. Genes Genomics. 40(4): 429-446. doi: 10.1007/s13258-017-0645-1. 
  21. Kumar, K., Srivastava, V., Purayannur, S., Kaladhar, V., Cheruvu, P.J., Verma, P.K. (2016). WRKY domain-encoding genes of a crop legume chickpea (Cicer arietinum): comparative analysis with Medicago truncatula WRKY family and characterization of group-III gene(s), DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes. 23: 225-239. 
  22. Kumar, S., Stecher, G., Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870-1874.
  23. Letunic, I., Doerks, T., Bork, P. (2012). SMART 7: recent updates to the protein domain annotation resource. Nucleic Acid Res. 40: D302-D305.
  24. Li, J., Wang, J., Wang, N.X., Guo, X.Q., Gao, Z. (2015). GhWRKY44, a WRKY transcription factor of cotton, mediates defense responses to pathogen infection in transgenic Nicotiana benthamiana. Plant Cell Tissue Organ Cult. 121: 127-140.
  25. Ling, J., Jiang, W., Zhang, Y., Yu, H., Mao, Z., Gu, X., Huang, S., Xie, B. (2011). Genome-wide analysis of WRKY gene family in Cucumis sativus. BMC Genomics. 10.1186/    1471-2164-12-471.
  26. Ma, J., Li, M.Y., Wang, F., Tang, J., Xiong, A. S. (2015). Genome-wide analysis of Dof family transcription factors and their responses to abiotic stresses in Chinese cabbage. BMC Evol. Biol. 8: 122-128.
  27. Mangelsen, E., Kilian, J., Berendzen, K., Kolukisaoglu, U., Harter, K., Jansson, C., Wanke, D. (2008). Phylogenetic and comparative gene expression analysis of barley (Hordeum vulgare) WRKY transcription factor family reveals putatively retained functions between monocots and dicots. BMC Genomics. 9: 194.
  28. MapInspect software. http://www.plantbreeding.wur.nl/ uk/software_ mapinspect.html.
  29. Marè, C., Mazzucotelli, E., Crosatti, C., Francia, E., Stanca, A.M., Cattivelli, L. (2004). Hv-WRKY38: a new transcription factor involved in cold- and drought-response in barley, Plant Mol Biol. 55: 399-416.
  30. Meng, D., Li, Y.Y., Bai, Y., Li, M.J., Cheng, L.L. (2016). Genome-wide identification and characterization of WRKY transcriptional factor family in apple and analysis of their responses to waterlogging and drought stress. Plant Physiol. Bioch. 103: 71-83.
  31. Muehlbauer, F.J., Sarker, A. (2017). Economic Importance of Chickpea: Production, Value and World Trade. In: The Chickpea Genome, Compendium of Plant Genomes, [Varshney RK, R Thudi M and Muehlbauer FJ (Eds.)], Springer International Publishing. pp. 05-12
  32. Pandey, S.P., Srivastava, S., Goel, R. Lakhwani, D., Singh, P., Asif, M.H., Sane, A.P. (2017). Simulated herbivory in chickpea causes rapid changes in defense pathways and hormonal transcription networks of JA/ethylene/GA/auxin within minutes of wounding. Sci. Rep. 7: 44729 doi: 10.1038/srep44729.
  33. Ramalingam, A., Kudapa, H., Pazhamala, L.T., Garg, V., Varshney, R.K. (2015). Gene expression and yeast two-hybrid studies of 1R-MYB transcription factor mediating drought stress response in chickpea (Cicer arietinum L.). Frontiers in Plant Science. 6. doi:10.3389/fpls.2015.01117. 
  34. Ross, C.A., Liu, Y., Shen, Q.J. (2007). The WRKY gene family in rice (Oryza sativa). J. Integr. Plant Biol. 49: 827-842.
  35. Sakuma, Y., Liu, Q., Dubouzet, J. G., Abe, H., Shinozaki, K., Yamaguchi-Shinozaki, K. (2002). DNA-binding specificity of the ERF/AP2 domain of arabidopsis DREBs, transcription factors involved in dehydration and cold-inducible gene expression. Biochemical and Biophysical Research Communications. 290: 998-1009. doi:10.1006/bbrc.2001.6299 
  36. Sani, S., G.A.S., Chang, P.L., Zubair, A., Carrasquilla-Garcia, N., Cordeiro, M., Penmetsa, R.V., Munis, M.F.H., Nuzhdin, S.V., Cook, D.R., von Wettberg, E.J. (2018). Genetic diversity, population structure and genetic correlation with climatic variation in chickpea (Cicer arietinum L.) landraces from Pakistan. Plant Genome. 11: 170067.
  37. Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., Kamiya, A., Nakajima, M., Enju, A., Sakurai, T., Satou, M., Akiyama, K., Taji, T., Yamaguchi-Shinozaki, K., Carninci, P., Kawai, J., Hayashizaki, Y., Shinozaki, K. (2002). Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant Journal. 279-292.
  38. Shiu, Shin-Han., Bleecher, A.B. (2003). Expansion of the receptor-like Kinase/Pelle gene family and receptor-like proteins in arabidopsis. Plant Physiology 132: 530-543.
  39. Song, H., Wang, P., Hou, L., Zhao, S., Zhao, C., Xia, H., Li, P., Zhang, Y., Bian, Wang X. (2016). Global analysis of WRKY genes and their response to dehydration and salt stress in soybean. Front Plant Sci. 7: 9.
  40. Thudi, M., Khan, A.W., Kumar, V., Gaur, P.M., Katta, K., Garg, V., Roorkiwal, M., Samineni, S., Varshney, R.K. (2016). Whole genome re-sequencing reveals genomewide variations among parental lines of 16 mapping populations in chickpea (Cicer arietinum L.). BMC Plant Biol. 16-10.
  41. Unkovich. M.J. Pate, J.S. (2000). An appraisal of recent field measurements of symbiotic N2 fixation by annual legumes. Field Crops Research. 65(2-3): 211-228.
  42. Varshney, R.K., Song, C., Saxena, R.K., Azam, S., Yu, S., Sharpe, A.G., et al. (2013). Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol. 31: 240-246. doi:10.1038/nbt.2491
  43. Varshney, R.K., Mohan, S.M., Gaur, P.M., Gangarao, N.V., Pandey, M.K., Bohra, A., et al. (2013). Achievements and prospects of genomics assisted breeding in three legume crops of the semi-arid tropics. Biotechnol. Adv. 31: 1120-1134.
  44. Wang, L., Yu, S., Tong, C., Zhao, Y., Liu, Y., Song, C., Zhang, Y., et al. (2014). Genome sequencing of the high oil crop sesame provides insight into oil biosynthesis. Genome Biol. 10.1186/gb-2014-15-2-r39.
  45. Wang, N., Xia, E.H., Gao, L.Z. (2016). Genome-wide analysis of WRKY family of transcription factors in common bean, Phaseolus vulgaris: chromosomal localization, structure, evolution and expression divergence. Plant Gene. 5: 22-30.
  46. Wei, K.F., Chen, J., Chen, Y.F., Wu, L.J., Xie, D.X. (2012). Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in maize. DNA Res. 10.1093/dnares/dsr048.
  47. Wu, X., Shiroto, Y., Kishitani, S., Ito, Y., Toriyama, K. (2009). Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep. 28: 21-30. doi: 10.1007/s00299-008-0614-x.
  48. Wu, Z.J., Li, X.H., Liu, Z.W., Li, H., Wang, Y.X., Zhuang, J. (2016). Transcriptome-wide identification of Camellia sinensis WRKY transcription factors in response to temperature stress. Mol Genet. Genom. 29: 255-269.
  49. Xie, Z., Zhang, ZL., Zou, X., Huang, J., Ruas, P., Thompson, D., Shen, J.S. (2005). Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant Physiology. 137: 176-189. DOI: 10.1104/    pp.104.054312.
  50. Xin, P.F., Gao, C.S., Cheng, C.H., Tang, Q., Dong, Z.X., Zhao, L.N., Zang, G.G. (2016). Identification and characterization of hemp WRKY transcription factors in response to abiotic stresses. Biol. Plantarum. 60: 489-495.
  51. Xiong, W., Xu, X., Zhang, L., Wu, P., Chen, Y., Li, M., Jiang, H., Wu, G. (2013). Genome-wide analysis of the WRKY gene family in physic nut (Jatropha curcas L.). Gene. 524: 124-132.
  52. Yamasaki K., Kigawa T., Inoue M., Tateno M., Yamasaki T., Yabuki T., Aoki, M., et al. (2005). Solution structure of an Arabidopsis WRKY DNA binding domain. Plant Cell. 17. 944-956.
  53. Yamasaki K., Kigawa T., Watanabe S., Inoue M., Yamasaki T., Seki M., Shinozak, K., Yokoyama, S. (2012). Structural basis for sequence-specific DNA recognition by an Arabidopsis WRKY transcription factor. J. Biol. Chem. 287: 7683-7691 10.1074/jbc.M111.279844.
  54. Yu, Y., Wang, N., Hu, R., Xiang, F. (2016). Genome-wide identification of soybean WRKY transcription factors in response to salt stress. Spring. 10.1186/s40064-016-2647-x.
  55. Zou, Z., Yang, L., Wang, D., Huang, Q., Mo, Y., Xie, G. (2016). Gene structures, evolution and transcriptional profiling of the WRKY gene family in castor bean (Ricinus communis L.). PLoS ONE. 11: e0148243.

Global Footprints