- Adhikary, S.P. (2015). Sustainable management of mining area through phytoremediation: An overview. International Journal of Current Microbiology and Applied Sciences. 4: 745-751.
- Ahirwal, J., Maiti, S.K. and Reddy, M.S. (2017). Development of carbon, nitrogen and phosphate stocks of reclaimed coal mine soil within 8 years after forestation with Prosopis juliflora (Sw.) Dc. Catena. 156: 42-50.
- Anonymous (2015). Indian Minerals Yearbook (Part- III: Mineral Reviews). 54th Edition, Ministry of Mines Indian Bureau of Mines Website: www.ibm.gov.in.
- Anonymous (2018). Indian Minerals Yearbook (Part- III: Mineral Reviews). 57th Edition, Ministry of Mines Indian Bureau of Mines Website: www.ibm.gov.in.
- Arnon, D.I. (1949). Copper enzymes in isolated chloroplast: polyphenol oxidase in Beta vulgaris. Plant Physiology. 24: 1-15.
- Botin, J.A. (2009). Sustainable management of mining operations. SME.
- Dhawi, F., Datta, R. and Ramakrishna, W. (2015). Mycorrhiza and PGPB modulate maize biomass nutrient uptake and metabolic pathways in maize grown in mining-impacted soil. Plant Physiology and Biochemistry. 97:390-399.
- Dubey, K.P., Pandey, A. and Tripathi, P. (2017). Microbial biofertilizer interventions in augmenting agroforestry, In: Probiotics and Plant Health, [Kumar, V., Kumar, M., Sharma, S., Prasad, R. (Eds.)], Singapore, 421-442.
- Gucwa-Przepióra, E., Nadgórska-Socha A., Fojcik, B. and Chmura, D. (2016). Enzymatic activities and arbuscular mycorrhizal colonization of Plantago lanceolata and Plantago major in a soil root zone under heavy metal stress. Environmental Science and Pollution Research. 23: 4742–4755.
- Jackson, M.L. (1967). Soil Chemical Analysis. Prentice-Hall of India Private Limited. New Delhi, pp 452.
- Jha, A.K. and Singh, J.S. (1992). Influence of microsites on redevelopment of vegetation on coalmine spoils in a dry tropical environment. Journal of Environmental Management. 36: 95-116.
- Jin, X., Yang, G., Tan, C. and Zhao, C. (2015). Effects of nitrogen stress on the photosynthetic CO2 assimilation, chlorophyll fluorescence and sugar-nitrogen ratio in corn. Scientific Reports Nature. 5: 1-9.
- Jnawali, A.D., Ojha, R.B. and Marahatta, S. (2015). Role of Azoto- -bacter in soil fertility and sustainability–A Review. Advances in Plants and Agriculture Research. 2(6):250-253.
- Joshi, H., Somduttand, Choudhary, P. and Mundra, S.L. (2019). Role of Effective Microorganisms (EM) in Sustainable Agriculture. International Journal of Current Microbiology and Applied Sciences. 8: 172-181.
- Juwarkar, A.A., Yadav, S. K., Thawale, P.R., Kumar, P., Singh, S.K. and Chakrabarti, T. (2009). Developmental strategies for sustainable ecosystem on mine spoil dumps: a case of study. Environmental Monitoring and Assessment. 157: 471-481.
- Kasana, R.C., Panwar, N.R., Burman, U., Pandey, C.B. and Kumar, P. (2017). Isolation and identification of two potassium solubilizing fungi from arid soil. International Journal of Current Microbiology and Applied Sciences. 6: 1752-1762.
- Kaur, N., Sharma, P. and Sharma, S. (2015). Co-inoculation of Mesorhizobium sp. and plant growth promoting rhizobacteria Pseudomonas sp. as bio-enhancer and biofertilizer in chickpea (Cicer arietinum L.). Legume Research-An International Journal. 38: 367-374
- Kumar, S., Meena, R.S., Lal, R., Yadav, G.S., Mitran, A., Meena, B.L., Dotaniya, M.L. and EL-Sabagh, A. (2018). Role of legumes in Carbon Sequestration. Legumes for Soil Health and Sustainable Management. 109-138. DOI: 10.1007/ 978-981-13-0253-4_4.
- Lendenmann, M., Thonar, C., Barnard, R.L., Salmon, Y., Werner, R.A., Frossard, E. and Jansa, J. (2011). Symbiont identity matters: carbon and phosphorus fluxes between Medicago truncatula and different arbuscular mycorrhizal fungi. Mycorrhiza. 21: 689-702.
- Maiti, S.K. and Ahirwal, J. (2019). Ecological restoration of coal mine degraded lands: topsoil management, pedogenesis, carbon sequestration and mine pit limnology. In Phyto- -management of Polluted Sites, 83-111. DOI:10.1016/ B978-0-12-813912-7.00003-x
- Mere, V., Singh, A.K. Singh, M., Jamir, Z. and Gupta. R.C. (2013). Effect of nutritional schedule on productivity and quality of soybean varieties and soil fertility. Legume Research- An International Journal. 36: 528-534.
- Muthukumar, T. and Udaiyan, K. (2006). Growth of nursery-grown bamboo inoculated with arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria in two tropical soil types with and without fertilizer application. New Forests. 31: 469-485.
- Nair, P.K.R. (2012). Climate change mitigation: A low-hanging fruit of agroforestry. In Agroforestry-The future of Global Land Use; Kumar, B.M., Nair, P.R., Eds.; Springer: Dordrecht, The Netherlands, pp. 31–67.
- Nelson, N. (1944). A photometric adaptation of the Somogyi method for determination of glucose. Journal of Biological Chemistry. 153: 375-380.
- Nyoki, D. and Ndakidemi, P.A. (2014). Effects of Bradyrhizobium japonicum inoculation and supplementation with phosphorus on macronutrients uptake in cowpea [Vigna unguiculata (L.) Walp]. American Journal of Plant Sciences. 5: 442-451.
- Olsen, S.R., Cole, C.V., Watanabe, F.S. and Dean, L.A. (1954). Estimation of Available phosphorus in soil by extraction with sodium bicarbonate. US Department of Agriculture. 939: 1-19.
- Pandey, D.N., Chaubey, A.C., Gupta, A.K. and Vardhan, H. (2005). Mine spoil restoration: a strategy combining rainwater harvesting and adaptation to random recurrence of droughts in Rajasthan. International Forestry Review. 7: 241-249.
- Peng, X.Z., Yang, S. X., Li, F. M., Cao, J. B. and Peng, Q. J. (2016). Effects of three industrial organic wastes as amendments on plant growth and the biochemical properties of a pb/ zn mine tailings. Huan jing ke xue= Huanjing kexue, 37: 301-308.
- Piha, M.I., Vallack, H.W., Michael, N. and Reeler, B.M. (1995). A low input approach to vegetation establishment on mine and coal ash wastes in semi-arid regions. II. Lagooned pulverized fuel ash in Zimbabwe. Journal of Applied Ecology. 32: 382-390.
- Piper, C.S. (1942). Soil and Plant Analysis. Hans, Bombay, pp 368.
- Prasanthi, G., Kumar, N.G., Raghu, S., Srinivasa, N. and Gurumurthy, H. (2019). Study on the effect of different levels of organic and inorganic fertilizers on microbial enzymes and soil mesofauna in soybean ecosystem. Legume Research. 42: 233-237.
- Qian, K., Wang, L. and Yin, N. (2012). Effects of AMF on soil enzyme activity and carbon sequestration capacity in reclaimed mine soil. International Journal of Mining Science and Technology. 22: 553-557.
- Rani N., Sharma H.R., Kaushik A., Sagar A. (2018) Bioremediation of Mined Waste Land. In: Handbook of Environmental Materials Management. [Hussain C. (eds)] Springer, Cham pp 1-25. DOI: 10.1007/978-3-319-58538-3_79-1
- Rao, A.V., Tarafdar, J.E. and Sharma, B.K. (1996). Characteristics of gypsum mine spoils. Journal of the Indian Society of Soil Science. 44: 544-546.
- Rath, M., Mishra, C.S.K. and Mohanty, R.C. (2010). Microbial population and some soil enzyme activities in iron and chromite mine spoil. International Journal of Ecology and Environmental Sciences. 36: 187-193.
- Saez-Plaza, P., Navas, M.J., Wybraniec, S., Micha³owski, T. and Asuero, A.G. (2013). An overview of the kjeldahl method of nitrogen determination. part ii. sample preparation, working scale, instrumental finish and quality control. Critical Reviews in Analytical Chemistry, 43: 224-272.
- Singh, A.N., Raghubansh, A.S. and Singh, J.S. (2002). Plantations as a tool for mine spoil restoration. Current Science. 82: 1436-1441.
- Singh, M., Arrawatia, M.L. and Tewari, V.P. (1998). Agroforestry for sustainable development in arid zones of Rajasthan. International Tree Crops Journal. 9: 203-212.
- Singh, B. and Schulze, D.G. (2015). Soil Minerals and Plant Nutrition. Nature Education Knowledge. 6:1.
- Smedley, P.L. and Kinniburgh, David. (2001). Source and behaviour of arsenic in natural waters, Chapter 1. United Nations Synthesis Report on Arsenic in Drinking Water. Wallingford, Oxon OX10 8BB, U.K: British Geological Survey.
- Subba-Rao, N.S. (1981). Bio-fertilizers in Agriculture. Oxford and IBH Publishing Co. New Delhi, Bombay, Calcutta.
- Tabatabai, M.A. (1982). Soil enzymes. In: Methods of soil analysis: Part 2 chemical and microbiological properties, [A.L. Page, R.H. Miller and D.R. Keeney (eds.)], Amer. Soc. Agron, Madison, Wisconsin.
- Tabatabai, M.A. and Bremner, J.M. (1969). Use of P-Nitrophenyl Phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry. 1: 301-307.
- Tewari, V.P. and Singh, M. (2006). Tree-crop interaction in the Thar Desert of Rajasthan (India). Science et changements planétaires/Sécheresse. 17: 326-332.
- Vapur, H., Demirci, S., Top, S. and Altiner, M. (2015). Removal of iron content in feldspar ores by leaching with organic acids. XVI BMP Congress. Conference Paper
- Vapur, H., Top, S., Demirci, S. (2017). Purification of feldspar from colored impurities using organic acids. Physicochemical Problems of Mineral Processing. 53: 150-160.
- Walkey, A.J. and Black, I.A. (1934). Estimation of soil organic carbon by the chromic acid titration method. Soil Science. 37: 29-38.
- Wu, S.C., Cheung, K.C., Luo, Y.M. and Wong, M.H. (2006). Effects of inoculation of plant growth promoting rhizobacteria on metal uptake by Brassica juncea. Environmental Pollution. 140: 124–135.
- Xu, P., Sun, C.X., Ye, X.Z., Xiao, W.D., Zhang, Q. and Wang, Q. (2016). The effect of biochar and crop straws on heavy metal bioavailability and plant accumulation in a Cd and Pb polluted soil. Ecotoxicology and Environmental Safety. 132: 94-100.
- Xue, S., Shi, L., Wu, C., Wu, H., Qin, Y., Pan, W., Hartley, W. and Cui, M. (2017). Cadmium, lead and arsenic contamination in paddy soils of a mining area and their exposure effects on human HEPG2 and keratinocyte cell-lines. Environ- -mental Research. 156: 23-30.
- Yang, Y., Liang, Y., Han, X., Chiu, T.Y., Ghosh, A., Chen, H. and Tang, M. (2016). The roles of arbuscular mycorrhizal fungi (AMF) in phytoremediation and tree-herb interactions in Pb contaminated soil. Scientific Reports. 6: 20469.
- Zhang, Z.Q. Shu, W.S., Lan, C.Y. and Wong, M.H. (2001). Soil seed bank as an input of seed sources in vegetation of lead/Zn mine tailing. Restoration Ecology. 9: 1-8.
Submitted Date : 13-01-2020
Accepted Date : 27-04-2020
First Online: