Legume Research

  • Chief EditorJ. S. Sandhu

  • Print ISSN 0250-5371

  • Online ISSN 0976-0571

  • NAAS Rating 6.67

  • SJR .391

  • Impact Factor .669 (2022)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Legume Research, volume 45 issue 12 (december 2022) : 1506-1516

Differential Responses on Chlorophyll Content, Osmolyte Accumulation and Membrane Damage Parameters under Salinity Stress on Tolerant and Susceptible Genotypes of Groundnut

Apurba Pal, Anjan Kumar Pal
1College of Horticulture, Khuntpani, Birsa Agricultural University, Kanke, Ranchi-834 006 Jharkhand, India. 
  • Submitted18-11-2019|

  • Accepted24-02-2020|

  • First Online 18-06-2020|

  • doi 10.18805/LR-4284

Cite article:- Pal Apurba, Pal Kumar Anjan (2022). Differential Responses on Chlorophyll Content, Osmolyte Accumulation and Membrane Damage Parameters under Salinity Stress on Tolerant and Susceptible Genotypes of Groundnut. Legume Research. 45(12): 1506-1516. doi: 10.18805/LR-4284.
Salinity can affect different physiological activity of plant in various ways. A controlled study was conducted to screen 26 genotypes of groundnut under 200mM NaCl salinity stress. The salt tolerance index or STI of the genotypes ranged from 47.57% to 96.40%. Out of all the genotypes KDG-197 (STI= 96.40%) was found to be the most tolerant under a salinity stress of 200 mM NaCl and it was closely followed by R 2001-2 (STI=87.92%), VG 315 (STI=84.05%), TCGS 1157 (STI=77.59%) and TG 51 (STI=73.67%). While the genotypes Girnar 3 (STI= 47.57%), OG 52-1 (STI=49.09%), TVG 0856 (STI= 49.28%) and J 86 (STI= 50.66%) were the most susceptible genotypes based on their relative performance under stress in respect of total dry weight. It has been noted further that  out of the nine genotypes, KDG 197 registered the minimum reduction (4.51% over control, 2.70% over control) in total chlorophyll and sugar accumulation respectively under NaCl stress whereas, Girnar 3 recorded the highest reduction in both parameters (60.00%, 70.32% over control) respectively, under saline condition. The genotype KDG 197 and R 2001-2 accounted for the highest increase in soluble protein and proline content in their leaves (144.02%, 780.16% over control) respectively than Girnar 3. KDG 197 recorded the minimum (3.39%) increase in lipid peroxidation under stress followed by R 2001-2 with an increase of 13.04% over control plants. In contrast, Girnar 3 registered the highest increase of TBARS content and electrolyte leakage (44.44%, 31.47% over control respectively) indicating maximum membrane damage but R 2001-2 recorded the minimum (3.00%) increase in electrolyte leakage percentage than Girnar 3 (31.47% over control) followed by OG 52-1 (26.14% over control) under stress. So, better osmotic adjustment through accumulation of proline, less membrane damage the leaves helped the tolerant genotypes to sustain under salinity stress in a better way than the susceptible genotypes. 
  1. Nithila, S., Durga, D. D., Velu, G., Amutha, R. and Rangaraju, G. (2013). Physiological Evaluation of Groundnut (Arachis hypogaea L.) varieties for Salt Tolerance and Amelioration for Salt Stress. Research Journal of Agriculture and Forestry Sciences. 1:1-8.
  2. Achakzai, A. K., Kayani, S. A. and Hanif, Z. (2010). Effect of salinity on uptake of micronutrients in sunflower at early growth stage. Pakistan Journal of Botany. 42:129-139.
  3. Akram, M., Ashraf, M. Y., Ahmad, R., Waraich, E. A., Iqbal, J. and Mohsan, M. (2010). Screening for salt tolerance in maize (Zea mays L.) hybrids at an early stage. Pakistan Journal of Botany. 42: 141-151.
  4. Al-aghabary, K., Zhu, Z. and Shi, Q. (2004). Influence of Silicon supply on chlorophyll content, chlorophyll fluorescence and antioxidative enzyme activities in tomato plants under salt stress. Journal of Plant Nutrition. 27: 2101-2115.
  5. Arnon, D. I. (1949). Copper enzyme in isolated chloroplast polyphenol oxidase in Beta vulgaris. Plant Physiology. 24: 1-15.
  6. Ashraf, M. (2009). Biotechnological approach of improving plant tolerance using antioxidants as markers. Biotechnology Advances. 27:84-93. 
  7. Ashraf, M. and Harris, P. J. C. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Sciences. 166:3-16.
  8. Ashraf, M., Athar, H. R., Harris, P. J. C. and Kwon, T. R. (2008). Some prospective strategies for improving crop salt tolerance. Advances in Agronomy., 97:45-110.
  9. Badigannavar, A. M., Mondal, S. and Murty, G. S. S. (2007). Genetic improvement for agronomical and biochemical traits in groundnut (Arachis hypogaea L.). Ph. D Thesis, University of Mumbai, Mumbai.1-121.
  10. Bakht, J., Basir, A., Shafi, M. and Khan M. J. (2006). Effect of various levels of salinity on sorghum at early seedling stage in solution culture. Sarhad Journal of Agriculture. 22: 17-21.
  11. Cha-um, S., Trakulyingcharoen, T., Smitamana, P. and Kirdmanee, C. (2009). Salt tolerance in two rice cultivars differing salt tolerant abilities in response to iso-osmotic stress. Australian Journal of Crop Science. 3: 221-230.
  12. Chen, C. and Dickman, M. B. (2005). Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii. Proceedings of the National Academy of Sciences (PNAS). 102: 3459- 3464.
  13. Chen, C., Tao, C., Peng, H. and Ding, Y. (2007). Genetic analysis of salt stress responses in Asparagus Bean [Vigna unguiculata (L.) ssp. sesquipedalis Verdc.]. Journal of Heredity. 98: 655- 665.
  14. Chen, C., Tao, C., Peng, H. and Ding, Y. (2007). Genetic analysis of salt stress responses in Asparagus Bean [Vigna unguiculata (L.) ssp. sesquipedalis Verdc.]. Journal of Heredity. 98: 655- 665.
  15. Chhabra, R. and Kamra, S. K. (2000). Management of salt affected soils. In: Extended Summaries, International Conference on Managing Natural Resources for Sustainable Agricultural Production in the 21st Century. Indian Society of Soil Science. 47-49.
  16. Cicek, N. and Cakirlar H., (2002). The effect of salinity on some physiological parameters in two maize cultivars. Bulgarian Journal of Plant Physiology. 28:66-74.
  17. Dioniso-Sese, M. L. and Tobita, S. (2000). Effects of salinity on sodium content and photosynthetic responses of rice seedlings differing in salt tolerance. Journal of Plant Physiology. 157:54-58.
  18. Dutta, P. and Bera, A. K. (2007). Germination and seedling development of two contrasting mungbean cultivars under simulated moisture stress conditions. Journal of Food Legumes. 20: 169-172.
  19. Flowers, T. J. and Yeo, A. R. (1981). Variability in the resistance of sodium chloride salinity within rice (Oryza sativa L.) varieties, New Phytology. 88: 363-373.
  20. Foolad, M. R. and Lin, G. Y. (1997). Absence of a genetic relationship between salt tolerance during seed germination and vegetative growth in tomato. Plant Breeding. 116: 363-367.
  21. Girdhar, I. K., Bhalodia, P. K., Misra, J. B., Girdhar, V. and Dayal, D. (2005). Performance of groundnut Arachis hypogaea L. as influenced by soil salinity and saline water irrigation in black clay soils. Journal of Oilseeds Research. 22:183-187.
  22. Girija, C., Smith, B. N. and Swamy, P. M. (2002). Interactive effects of sodium chloride and calcium chloride on the accumulation of proline and glycinebataine in peanut (Arachis hypogaea L.). Environmental and Experimental Botany. 47:1-10.
  23. Guo, Z., Ou, W., Lu, S. and Zhong, Q. (2006). Differential responses of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity. Plant Physiology and Biochemistry. 44: 828-836.
  24. Gupta, N. K., Gupta, S., Sharma, N. K. and Kumar, A. (1999). Morpho-physiological responses of germinating wheat genotypes to sodium chloride salinity. Journal of Eco- physiology. 2: 19-24. 
  25. Hajer, A. S., Malibari, A. A., Al-Zahrani, H. S. and Almaghrabi, O. A. (2006). Responses of three tomato cultivars to sea water salinity 1. Effect of salinity on the seedling growth. African Journal of Biotechnology. 5: 855-861.
  26. Heath, R. L. and Packer, L. (1968). Photoperoxidaton in isolated chloroplast. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics. 12:189- 198.
  27. Hunshal, C. S., Viswanath, D. P., Chimmad, V. P. and Gali, S. K. (1991). Performance of groundnut genotypes under saline water irrigation. Journal of Maharashtra Agricultural Universities. 16: 116-117.
  28. Janila, P., Rao, T. N. and Kumar, A. A. (1999). Germination and early seedling growth of groundnut (Arachis hypogaea L.) varieties under salt stress. Annals of Agricultural Research. 20: 180-182.
  29. Jiang, Y. and Huang, B. (2002) Protein alterations in tall fescue in response to drought stress and abscisic acid. Crop science. 42: 202-207.
  30. Joshi, Y. C., Ravindra, V., Nautiyal, P. C. and Zala, P. V. (1990). Screening for salt-tolerance in groundnut. Groundnut News. 2: 4. 
  31. Kapoor, K. and Srivastava, A. (2010). Assessment of salinity tolerance of Vinga mungo var. Pu-19 using ex vitro and in vitro methods. Asian Journal of Biotechnology. 2: 73-85.
  32. Kavi-Kishor, P. B., Sangam, S., Amrutha, R. N., Sri Laxmi, P., Naidu, K. R., Rao, K. R. S. S., Sreenath, R., Reddy, K. J., Theriappan, P. and Sreenivasulu, N. (2005). Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abioticstress tolerance. Current Science. 88:424-438.
  33. Khan, M. H. and Panda, S. K. (2008). Alterations in root lipid peroxidation and antioxidative responses in two rice cultivars under NaCl-salinity stress. Acta Physiologiae Plantarum. 30:91-89.
  34. Kukreja, S., Nandwal, A. S., Kumar, N., Sharma, S. K., Unvl, V. and Sharma, P. K. (2005). Plant water staus, H2O2 scavenging enzymes, ethylene evolution and membrane integrity of Cicer arietinum roots as affected by salinity. Biologia Plantarum. 49: 305-308.
  35. Lowry, O. H., Rosebrogh, N. J., Farr, L. and Randall, R. J. (1951). Protein measurement with Folin phenol reagent. Journal of Biological Chemistry. 193: 265- 275. 
  36. Mafakheri, A., Siosemardeh, A. and Bahramnejad, B. (2010). Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Australian Journal of Crop Science. 4: 580-585.
  37. Mensah, J. K., Akomeah, P. A., Ikhajiagbe, B. and Ekpekurede, E. O. (2006). Effects of salinity on germination, growth and yield of five groundnut genotypes. African Journal of Biotechnology. 5:1973-1979.
  38. Mohanty, S. K. and and Sridhar, R. (1982). Physiology of rice tungro virus disease: proline accumulations due to infection. Physiologia Plantarum. 56: 89-93. 
  39. Moller, I. M., Jensen, P. E. and Hansson, A. (2007). Oxidative modifications to cellular components in plants. Annual Review of Plant Biology. 58:459-481.
  40. Mousavi, A., Lessani, H., Babalar, M. and Talaie, A. (2008). Influence of salinity on some physiological parameters in leaves of young olive plants. Acta Horticulturae. 791: 483- 488.
  41. Munns, R., James, K. A. and Lauchli, A. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany. 57: 1025-1043.
  42. Murkute, A. A., Sharma, S. and Singh, S. K. (2006). Studies on salt stress tolerance of citrus rootstock genotypes with arbuscular mycor-rhizal fungi. Horticultural Science. 33:70-76
  43. Nautiyal, P. C., Bandyopadhyay, A., Koradia, V. G. and Makad, M. (2000). Performance of groundnut germplasm and cultivars under saline water irrigation in the soils of Mundra in Gujarat, India. International Arachis Newsletter. 20: 80-82.
  44. Nithila, S., Durga, D. D., Velu, G., Amutha, R. and Rangaraju, G. (2013). Physiological Evaluation evaluation of Groundnut groundnut (Arachis hypogaea L.) varieties for salt tolerance and amelioration for salt stress. Research Journal of Agriculture and Forestry Sciences. 1:1-8.
  45. Panda, S. K. (2001). Oxidative response of green gram seeds under salinity stress. Indian Journal Plant Physiology. 6:438-440.
  46. Parida, A. K. and Das, A. B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety. 60: 324-349.
  47. Parvaiz, A. and Satyavati, S. (2008). Salt stress and phyto-biochemical responses of plants- a review. Plant and Soil Environment. 54: 89-99.
  48. Patel, I. C., Patel, S. R., Prajapati, D. G. and Patel, V. C. (2007). Effect of salinity physiological and biochemical changes of wheat (Triticum aestivum L.) seed during germination. Plant Archives. 7: 599-602.
  49. Promila, K. and Kumar, S. (2000). Vigna radiata seed germination under salinity. Biologia Plantarum. 43: 423-426.
  50. Saha, P., Chatterjee, P. and Biswas, A. K. (2010). NaCl pretreatment alleviates salt stress by enhancement of antioxidant defense system and osmolyte accumulation in mungbean (Vigna radiata L. Wilczek). Indian Journal of Experimental Biology. 48: 593-600.
  51. Sharma, S., Villamor, J. G. and Verslues, P. E. (2011). Essential role of tissuespeciûc proline synthesis and catabolism in growth and redox balance at low water potential. Plant Physiology. 157:292-304.
  52. Sibole, J. V. Cabot, C. Poschenreder, C. and Barcelo J. (2003). Efficient leaf ion partitioning, an overriding condition for abscisic acid-controlled stomatal and leaf growth responses to NaCl salinization in two legumes. Journal of Experimental Botany. 54: 2111-2119.
  53. Singh, A. K. and Singh, R. A. (1999). Effect of salt stress on chickpea germination. Journal of Research (BAU). 11: 201-204.
  54. Singh, A. L., Basu, M. S. and Singh, N. B. (2004). Mineral Disorders of Groundnut. National Research Center for Groundnut (ICAR), Junagadh, India. 85.
  55. Singh, A. L., Hariprasanna, K. and Basu, M. S. (2007). Identification of salinity tolerant groundnut germplasm lines. In: Extended Summaries: National Seminar on Changing Global Vegetable Oils Scenario: Issues and Challenges Before India. Indian Society of Oilseeds Research. 367-368.
  56. Suárez, D. L. and Lebron, I. (1993). Water quality criteria for irrigation with high saline water. In: Towards the rational Rational use of high High Salinity Tolerant Plants (Leith H., Al-Masoom A., eds). Kluwer Academic Publishers, The Netherlands. pp. 389-397.
  57. Szabados, L. and Savoure´, A. (2010). Proline: a multifunctional amino acid. Trends Plant Sciences. 15: 89-97.
  58. Taffouo, V. D. Wamba, O. F. Yombi, E. Nono, G.V. and Akoa, A. (2010). Growth, yield, water status and ionic distribution response of three bambara groundnut [Vigna subterranean (L.) verdc.] landraces grown under saline conditions. International Journal of Botany. 6: 53-58.
  59. Tort, N. and Turkyilmaz, B. (2004). A physiological investigation on the mechanisms of salinity tolerance in some barley culture forms. Journal Forestry Science. 27:1-16.
  60. Turan, M. A., Katkat, V. and Taban, S. (2007). Variation in proline, chlorophyll and mineral elements contents of wheat plants grown under salinity stress. Journal of Agronomy. 6: 137- 141.
  61. Verbruggen, N. and Hermans, C. (2008). Proline accumulation in plants: a review. Amino Acids. 35: 753-759.
  62. Yoshida, S., Forno, D. A., Cock J. H. and Gomoz, K. A. (1972). Laboratory Manual for Physiological Studies of Rice, 2nd edn. International Rice Research Institute, Loss Banos, Philippines.

Editorial Board

View all (0)