Loading...

Selection of Suitable Genotypes of Urdbean (Vigna mungo L.) for Targeted Environments of Hilly Terrains of India using GGE Biplot and AMMI Analysis

DOI: 10.18805/LR-4254    | Article Id: LR-4254 | Page : 669-675
Citation :- Selection of Suitable Genotypes of Urdbean (Vigna mungo L.) for Targeted Environments of Hilly Terrains of India using GGE Biplot and AMMI Analysis.Legume Research.2022.(45): 669-675
M.S. Jeberson, A.K. Parihar, K.S. Shashidhar, Jai Dev, S.A. Dar, Sanjeev Gupta ashoka.parihar@gmail.com
Address : All India Coordinated Research Project (MULLaRP), ICAR-Indian Institute of Pulses Research, Kanpur-208 024, Uttar Pradesh, India.
Submitted Date : 7-10-2019
Accepted Date : 6-02-2020

Abstract

Understanding of genotypic interactions is highly instrumental in urdbean towards identification of suitable genotypes with wider adaptability. Therefore, present experiment with 20 diverse urdbean genotypes was executed over three environments in northern hilly terrain under rainfed conditions. AMMI analysis revealed that environments (E), genotypes (G) and G x E interaction effects were found significant for grain yield (GY). The environment, genotypes and their interactions accounted 46.29%, 25.9% and 22.23% of the total variation. The interaction principal components Axis 1(IPCA 1) and IPCA 2 of AMMI were founds significant (P<0.01) for GY based on Gallob’s test.  The IPCA1 accounted more than 89% of the G x E interactions effects for the GY. In GGE biplot PC1 and PC2 captured 99.3% of the total variations. Based on GGE and AMMI biplots the genotypes with wider adaptability were VBG 12-034(G7), IPU 13-3(G16) and COBG 13-04(G13). These genotypes are suitable for hilly terrains of northern India and can be further utilized as donor in future urdbean improvement programme. 

Keywords

GE interactions IPCA Stability Urdbean

References

  1. Abdipur M. and B. Vaezi. (2014). Analysis of the genotype-by-environment interaction of winter barley tested in the rain-    fed regions of Iran by AMMI adjustment. Bulg. J. Agric. Sci. 20: 421-427.
  2. Alam A.K.M.M., Somta P., Jompuk C., Chatwachirawong P. and Srinives P. (2014). Evaluation of mungbean genotypes based on yield stability and reaction to mungbean yellow mosaic virus disease. Plant Pathol. J. 30: 261-268.
  3. Anonymous. (2018). Project Coordinator Report (Mungbean and Urdbean) 2017-18. All India Coordinated Research Project on MuLLaRP, ICAR-IIPR, Kanpur. 
  4. Ceccarelli S., Grando S. and Booth R.H. (2006). International Breeding Programmes and Resource Farmers: Crop Improvement in Difficult Environments. The International Centre for Agricultural Research in the Dry Areas (ICARDA), Aleppo, Syria.
  5. Ceyhan E., Kahraman A., Ates M.K. and Karadas. (2012). Stability analysis on seed yield and its components in peas. Bulgarian J. Agric. Sci. 18: 905-911.
  6. Chatterjee C., Debnath M., Karmakar N. and Sadhukhan R. (2019). Stability of grass pea (Lathyrus sativus L.) genotypes in different agroclimatic zone in eastern part of India with special reference to West Bengal. Genet. Resour. Crop Evol. 66:1515-1531.
  7. Cruz C. D., Regazzi A. J. and Carneiro P. C. S. (2004). Modelos biométricos aplicados ao melhoramento genetico. Vicosa: Editora da UFV.
  8. Das A., Parihar A.K., Saxena D., Singh D., Singha K.D., Kushwaha K.P.S., Chand R., Bal R.S., Chandra S. and Gupta S. (2019). Deciphering genotype-by-environment interaction for targeting test environments and rust resistant genotypes in field pea (Pisum sativum L.). Frontiers in Plant Sci. 10: 825. doi: 10.3389/fpls.2019.00825.
  9. Ebdon J. S. and Gauch H. G. (2002). Additive Main Effect and Multiplicative Interaction Analysis of National Turfgrass Performance Trials. I. Interpretation of Genotype× Environment Interaction. Crop Sci. 42: 489-496.
  10. Eberhart S. A. and Russel W. A. (1966). Stability parameters for comparing varieties. Crop Sci. 6: 36-40.
  11. Freeman G.H. and Perkins J.M. (1971). Environmental and genotype environmental components of variability. VIII. Relations between genotypes grown in different environments and measure of these environments. Heredity. 26:15-23.
  12. Getachew T., Firew M., Asnake F. and E. Million. (2015). Genotype x environment interaction and stability analysis for yield and yield related traits of kabuli-type chickpea (Cicer arietinum L.) in Ethiopia. Afr. J. Biotechnol. 14:1564-1575.
  13. Gupta S., Gupta S.R., Dikshit H. K. and Singh. R. A. (2001). Variability and its characterization in Indian collections of blackgram. Plant Genetic Resources Newsletter. 127:20-24.
  14. Gupta S., Parihar A.K., Koteswara Rao Y., Ravi V., Iyanar K. and Gupta D.S. (2016). Rice fallow cultivation in India: mungbean and urdbean (Pocket guide), AICRP on MULLaRP, ICAR-    Indian Institute of Pulses Research, Kanpur-208024. Extension Bulletin, pp 44.
  15. Hugh G. O. (2006). Statistical analysis of yield trials by AMMI and GGE: Crop Sci. 46: 1488-1500.
  16. Jeberson M.S., Parihar A. K., Shashidha K. S., Jai Dev, Dar S. A. and Gupta S. (2019) b. Identification of suitable mungbean genotypes for hilly terrains of India using GGE and AMMI biplot approaches. J. Env. Biol. 40:1188-1195.
  17. Jeberson M.S., Shashidhar K.S., Wani S.H., Singh A.K. and Dar S.A. (2019)a. Identification of stable lentil (Lens culinaris Medik) genotypes through GGE biplot and AMMI analysis for North Hill Zone of India. Legume Res. 42(4): 467-472. 
  18. Karimizadeh R., Mohammadi M., Sabaghni N., Mahmoodi A.A., Roustami B., Seyyedi F. and Akbari F. (2013). GGE Biplot Analysis of yield stability in multi environment trials of lentil Genotypes under rainfed condition. Not. Sci. Biol. 5: 256-262.
  19. Kumar A., Parihar A.K., Dixit G.P. and Gupta S. (2014). Resistance potential of newly released urdbean genotypes against Mungbean yellow mosaic India virus. Indian Phytopathol. 67:314-315
  20. Kumar S., Choubey A.K. and Singh S. 2015. Analysis of yield gaps in black gram (Vigna mungo) in district Bilaspur of Himachal Pradesh. Himachal J. Agric. Res. 41: 49-54
  21. Luo J., Yuan Z. N., Zhang H., Chen Y.Q. and Chen R. K. (2009). Stability analysis on yield characters of sugarcane ratoon. Chin. J. Appl. Environ. Biol. 15: 488-494.
  22. Luo, J., Pan, Y.B., Que, Y., Zhang, H., Grisham M. P. and Xu L. (2015b). Biplot evaluation of test environments and identification of mega-environment for sugarcane cultivars in China. Sci. Rep. 5: 15505.http://doi.org/10.1038/srep15505.
  23. Luo, J., Pan, Y.B., Xu, L., Grisham, M. P., Zhang H. and Que Y. (2015a). Rational regional distribution of sugarcane cultivars in China. Sci. Rep. 5: 15721. http://doi.org/10.1038/srep15721.
  24. Mukherjee A. K., Mohapatra N. K., Bose L. K., Jambhulkar N. N. and Nayak, P.(2013). Additive main effects and multiplicative interaction (AMMI) analysis of GxE interactions in rice-blast pathosystem to identify stable resistant genotypes. Afr. J. Agric. Res. 44:5492-5507.
  25. Namorato H., Miranda G. V., Souza L. V. D., Oliveira, L. R., DeLima, R. O. and Mantovani, E.E. (2009). Comparing biplot multivariate analyses with Eberhart and Russell method for genotype x environment interaction. Crop Breeding and App. Biotech. 9: 299-307.
  26. Negash K., Tumsa K., Amsalu B., Gebeyehu S., Atero B., Assefe S., Teso B., Arega A. and Rezene Y. (2017). Grouping of environments for testing Navy bean in Ethiopia. Ethio. J. Agric. Sci. 27: 111-130. 
  27. Parihar A.K., Basandrai A. K., Saxena D.R., Kushwaha K. P. S., Chandra S., et al. (2017c). Biplot evaluation of test environments and identification of lentil genotypes with durable resistance to fusarium wilt in India. Crop Pasture Sci. 68(10-11):1024-1030.https://doi.org/10.1071/CP1725.
  28. Parihar A.K., Basandrai, A.K., Sirari, A., Dinakaran, D., Singh, D., Kannan, K., et al. (2017b). Assessment of mungbean genotypes for durable resistance to Yellow Mosaic Disease: Genotype x Environment interactions. Plant Breed. 136: 94-100.
  29. Parihar A.K., Kumar A., Dixit G.P. and Gupta S. (2017a). Seasonal effects on outbreak of yellow mosaic disease in released cultivars of mungbean (Vigna radiata) and urdbean (Vigna mungo). Indian J. Agric. Sci., 87:734-738.
  30. Parihar, A.K., Basandrai, A. K., Kushwaha, K. P. S., Chandra, S., Singha, K. D., et al. (2018). Targeting test environments and rust resistant genotypes in lentils (Lens culinaris Medik.) using heritability adjusted biplot analysis. Crop and Pasture Sci. 69:1113-1125.https://doi.org 10.1071/CP18259.
  31. Perkins J.M. and Jinks J.L. (1968). Environmental and genotype environmental components of variability. III. Multiple lines and crosses. Heredity. 23:239-256.
  32. Rezene Y., Bekele A. and Goa Y. (2014). GGE and AMMI biplot analysis for fieldpea yield stability in SNNPR state, Ethiopia. Inter. J. Sustainable Agric. Res. 1: 28-38.
  33. SAS. (2011). SAS Software version 9.3. SAS Institute INC Cary NC USA. 
  34. Segherloo A. E., Sabaghpour S. H., Dehghani H. and Kamrani M. (2010). Screening of superior chickpea genotypes for various environments of Iran using genotype plus genotype × environment (GGE) biplot analysis. J. Plant Breed. Crop Sci. 2: 286-292.
  35. Sharma M., Kiran Babu T., Gaur P.M., Ghosh R., Rameshwar T., Chaudhary R.G., et al. (2012). Identification and multi environment validation of resistance to Fusarium oxysporum f. sp. ciceris in chickpea. Field Crops Res. 135: 82-88. doi:10.1016/j.fcr.2012.07.004.
  36. Singh C.M., Mishra S. B., Pandey A. and Arya M. (2014). Eberhart -Russell and AMMI Approaches of genotype by environment interaction (GEI) for yield and yield component traits in Vigna radiata L. Wilczek. Inter. J. Agric., Envir. Biotech. 7: 277-292.
  37. STAR (2014). Biometrics and Breeding Informatics, version 2.0.1., PBGB Division, Los Baños, Laguna: International Rice Research Institute.
  38. Tadesse T., Tekalign A., Sefera G. and Muligeta B. (2017). AMMI model for yield stability analysis of linseed genotypes for the highlands of Bale, Ethiopia. Plant. 5: 93-98.
  39. Tarakanovas P. and Ruzgas V. (2006). Additive main effect and multiplicative interaction analysis of grain yield of wheat varieties in Lithuania. Agron. Res. 4: 91-98.
  40. Tolessa T.T., Keneni G., Sefera T., Jarso M., Bekele Yeneneh. (2013). Genotype x Environment interaction and performance stability for grain yield in Fieldpea (Pisum sativum L.) genotypes. Inter. J. Plant Breed. 7:116-123.
  41. Waniale A., Wanyera N. and Talwana H. (2014). Morphological and agronomic traits variations for mungbean variety selection and improvement in Uganda. Afr. Crop Sci. J. 22: 123-136.
  42. Yan W. (2001). GGE biplot- A windows application for Graphical Analysis of Multi-environment trial data and other types of two-way data. Agron. J. 93:1111-1118.
  43. Yan W. (2002). Singular-value portioning in biplot analysis of multi-    environment trial data. Agron. J. 94: 990-96.
  44. Yan W. and Kang M.S. (2003). GGE Biplot Analysis: A Graphical Tool for Breeders, Geneticists, Agronomists. CRC Press, Boca Raton, FL. 
  45. Yan W. and Tinker N. A. (2006). Biplot Analysis of Multi-environment Trial Sata: Principles and Applications. Can. J. Plant Sci. 86: 623-645.
  46. Yan W., Hunt L. A., Sheng Q. and Szlanics Z. (2000). Cultivar evaluation and megaenvironment investigation based on the GGE biplot. Crop Sci. 40: 597-605.
  47. Yan W., Kang M.S., Ma B., Wood S. and Cornnelius P.L. (2007). GGE Biplot vs. AMMI Analysis of Genotype-by-environment Data. Crop Sc. 47: 643-655.
  48. Zhou C. J., Tian Z. Y. and Li J. Y. (2011). GGE-Biplot analysis on yield stability and testing-site representativeness of soybean lines in multi-environment trials. Soybean Sci. 30: 318- 322. 

Global Footprints