Loading...

Isolation, Identification and Role of Novel Endosymbiotic Bacterium Rhizobium pusence in Root Nodule of Green Gram cv.OUM-11-15 (Vigna radiata L.) under Salinity Stress

DOI: 10.18805/LR-4239    | Article Id: LR-4239 | Page : 1512-1520
Citation :- Isolation, Identification and Role of Novel Endosymbiotic Bacterium Rhizobium pusence in Root Nodule of Green Gram cv.OUM-11-15 (Vigna radiata L.) under Salinity Stress.Legume Research.2021.(44):1512-1520
R. Das, M. Pradhan, R.K. Sahoo, S. Mohanty, M. Kumar kunmun.babli@gmail.com
Address : Department of Soil Science, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, 848125, India. 
Submitted Date : 18-09-2019
Accepted Date : 9-04-2020

Abstract

In this study, most efficient salinity stress tolerant Rhizobium strain named Rhizobium pusence strain KHDEB5 was identified from root nodules of OUM-11-15 out of fifteen endophytic isolates from root nodules of four (PDM54, SML668, Pusa Baisakhi and OUM-11-15) green gram cultivars from five different locations of Khordha district of Odisha, India and after a series of evaluation. Its 16S rRNA sequence was provided with accession number KY679150 by NCBI. Nodulation behavior of R. pusense strain KHDEB5 was evaluated under different levels of salinity stress (NaCl concentrations) by bioinoculation with green gram (cv. OUM-11-15) seeds. In seed germination bioassay (green gram cv. OUM-11-15) with five nodulating rhizobium strain, R. pusense strain KHDEB5 recorded (31%) higher seedling dry weight with salinity stress upto 500 mM of NaCl when compared with the other strains. The strain R. pusense strain KHDEB5 was found to be most tolerant to salinity (up to 1000 mM NaCl) and also could tolerate up to pH 8.5. In pot culture study, with same seed, Rhizobium pusense strain could enhance N concentration in green gram with salinity stress upto 1000 mM of NaCl. Bioinoculation of most efficient endophyte R. pusense strain KHDEB5 could enhance 112% to 137% N concentration in green gram without salinity stress and 31% with salinity stress upto 1000 mM of NaCl in pot culture studies. R. pusence strain KHDEB5 could be considered most resistant native rhizobium to enhance root nodulation even at salinity stress. 

Keywords

Green gram Rhizobia Rhizobium pusence Salinity stress Symbiotic nitrogen fixation

References

  1. Anglade, J., Billen, G. and Garnier J. (2015). Relationships for estimating N2 fixation in legumes: incidence for N balance of legume-based cropping systems in Europe. Ecosphere. 6: 1-24. 
  2. Baldani, J.I., Krieg, N.R., Baldani, V.L.D., Hartmann, A. and Dobereiner J. (2005). Genus II. Azospirillum. In: Bergey’s Manual of Systematic Bacteriology, [Brenner DJ, Krieg NR, Staley JT (eds)] vol 2C. Springer, New York, USA: 7–26pp.
  3. Bauer, A.W., Kirby, W.M., Sherris, J.C. and Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology. 45: 493-496.
  4. Bergey, D.H., Holt, J.G., Krieg, N.R. and Sneath, P.H.A. (1994). Bergey’s Manual of Determinative Bacteriology (9th edition). Lippincott Williams and Wilkins. ISBNO-683-00603-7.
  5. Castro, I.V., Ferreira, E.M. and McGrat, S.P. (2003). Survival and plasmid stability of rhizobia introduced into a contaminated soil. Soil Biology and Biochemistry. 35: 49-54.
  6. Crews, T.E. and Peoples, M.B. (2004). Legume versus fertilizer sources of nitrogen: ecological tradeoffs and human needs. Agriculture, Ecosystem and Environment. 102: 279-297.
  7. Dey, R., Pal, K.K., Bhatt, D.M. and Chauhan, S.M. (2004). Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiological Research. 159: 371-394.
  8. El-Akhal, M. R., Rincón, A., Coba De La Peña, T., Lucas, M. M., El Mourabit, N. and Barrijal, S. (2013). Effects of salt stress and rhizobial inoculation on growth and nitrogen fixation of three peanut cultivars. Plant Biology. 15: 415-421. 
  9. Erum, S. and Asghari, B. (2008). Variation in phytohormone production in Rhizobium strains at different altitudes of northern areas of Pakistan. Pakisthan International Journal of Agricultural Biology. 10: 536-40.
  10. Fernández, L.A., Zalba, P., Gómez, M.A. and Sagardoy, M.A. (2007). Phosphate-solubilization activity of bacterial strains in soil and their effect on soybean growth under greenhouse condition. Biology and Fertility of Soils. 43: 805-809.
  11. Franche, C., Lindstrom, K. and Elmerich, C. (2009). Nitrogen fixing bacteria associated with leguminous and non-leguminous plants. Plant and Soil. 321: 35-59.
  12. Gomez, K. A. and Gomez, A. A. (1984). Statistical Procedures for Agricultural Research. John Wiley and sons, New Delhi, 680 p. 
  13. Hofer, AW. (1935). Methods for distinguishing between legume bacteria and their most common contaminants, Journal of American Society of Agronomy. 27: 228-230.
  14. Holt, G.J., Bergey, D., Krieg, H., Peter, N.R. and Sneath, H.A, (1994). Bergey’s Manual of Determinative Bacteriology (9th edition). Lippincott Williams and Wilkins. ISBNO-683-00603-7.
  15. Hussain, M., Ashraf, M., Saleem, M. and Hafeez, F.Y. (2002). Isolation and characterization of Rhizobial strains from alfalfa. Pakisthan Journal of Agricultural Science. 39: 32-34.
  16. Jackson, M. L. (1973). Soil Chemical Analysis, Prentice Hall of India Pvt. Ltd., New Delhi.
  17. Kennedy, C., Rudnick, P., MacDonald, M.L. and Melton, T. (2005). Genus III. Azotobacter. In: Brenner Bergey’s Manual of Systematic Bacteriology, [DJ, Krieg NR, Staley JT (eds)] vol 2B. Springer, New York, USA: 384-402pp.
  18. Kerr, A. (1992). The genus Agrobacterium. In The Prokaryotes – a Handbook on the Biology of Bacteria, 2nd edn, [Edited by Balows A., Truper H.G., Dworkin M., Harder W., Schleifer K. H.,] Springer-Verlag. Heidelberg:pp. 2214-2235.
  19. Kucuk, C. M., Kivanç, M. and Kinaci, E. (2006). Characterization of Rhizobium Sp. Isolated from Bean. Turkish Journal of Biology. 30: 127-132.
  20. Lee, S. G., Krishnan, H. B. and Jez, J. M. (2014). Structural basis for regulation of rhizobial nodulation and symbiosis gene expression by the regulatory protein NolR. Proceeding of National Academy of Sciences of the United States of America. 111: 6509-6514. 
  21. Martin-Didonet, C.C.G., Chubatsu, L.S., Souza, E.M., Kleina, M., Rego, F.G.M., Rigo, L.U., Yates, M.G. and Pedrosa, F.O. (2000). Genome structure of the genus Azospirillum. Journal of Bacteriology. 182: 4113-4116.
  22. McKnight, T. (1949). Efficiency of isolates of Rhizobium in the cow pea group, with proposed additions to this group. Queensland Journal of Agricultural Science. 6: 61-76.
  23. Meghvansi, M.K., Prasad, K. and Mahna, S.K. (2010). Symbiotic potential, competitiveness and compatibility of native Bradyrhizobiumjaponicumisolates to three soybean genotypes of two distinct agro-climatic regions of Rajasthan, India. Saudi Journal of Biological Science. 17: 303-310.
  24. Michael, J.S. and Graham, P.H. (2006). Root and stemnodule bacteria of legumes. Prokaryotes. 2: 818-841.
  25. Mistra, R.D. and Ahmed, M., (1987). Root parameters and their measurement, In: Manual of Irrigation Agronomy. 319-326pp.
  26. Mohammadi, K. and Sohrabi, Y. (2012). Bacterial Biofertilizers for sustainable crop production: A Review. Journal of Agricultural and Biological Science. 7: 307-316.
  27. Mwangi, S.N., Karanja, N.K., Boga, H., Kahindi, J.H.P., Muigai, A. and Dee, D. (2011). Genetic diversity and symbiotic efficiency of legume nodulating bacteria from different and use systems in TaitaTaveta, Kenya. Tropical and Subtropical Agroecosystems. 13: 109-118.
  28. Page, A.L., Miller, R.H. and Keeny, D.R. (1982). Methods of Soil and Plant Analysis, part-2,2nd Edn. No (9) Part in the series, American Society of Agronomy, Inc. Soil Science Society of American Journal. Madison, Wisconsin, U.S.A.
  29. Patel, P.H., Patel, J.P. and Bhatt, S.A. (2013). Characterization and phylogenetic relatedness of Azotobacter salinestris. Journal of Microbiology and Biotechnology Research. 3: 65-70.
  30. Russeille, M.P. (2008). Biological Dinitrogen Fixation in Agriculture: Nitrogen in Agricultural Systems. 49: 281-359.
  31. Sanaa, M.E.D. and Fawziah, S.AS. (2005). Role of some chemical compounds on the detoxification of Rhizobium leguminosarum biovtirvicia by some Heavy Metals. Pakisthan Journal of Biolical Science. 8: 1693-1698.
  32. Singh, B., Ravneet, K. and Kashmir, S. (2008). Characterization of Rhizobium strain isolated from the roots of Trigonella foenumgraecum (fenugreek). African Journal of Biotechnology. 7: 3671-3676.
  33. Singh, J.S., Koushal, S., Kumar, A., Vimal, S.R. and Gupta, V.K. (2016). Book review: microbial inoculants in sustainable agricultural productivity-Vol. II: functional application. Frontier Microbiology. 7: 2105.
  34. Sobti, S., Belhadj, H.A. and Djaghoubi, A. (2015). Isolation and characterization of the native rhizobia under hyper-salt edaphic conditions in Ouargla. Science direct. 74: 1434-1439.
  35. Subba Rao, N.S. (2006). “Soil Microbiology” 4th edition, Oxford and IBH publishing Co. Pvt, New Delhi.
  36. Subbaiah, B.V. and Asija, G.L. (1956). A rapid procedure for the estimation of available nitrogen in soil. Current Science. 25: 259-260.
  37. Swaraj, K.and Bishnoi, N.R. (1999). Effect of salt stress on nodulation and nitrogen fixation in legumes. Indian Journal of Experimental Biology. 9: 843-848.
  38. Tairo, E.V. and Ndakidemi, P.A. (2013). Possible benefits of rhizobial inoculation and phosphorus supplementation on nutrition, growth and economic sustainability in grain legumes. American Journal of Research and Communication. 1: 532-556.
  39. Vincent, J.M. (1970). A manual for the practical study of root nodule Bacteria. In I.B.P. Hand Book No. 15, Blackwell scientific publications. Oxford. England: 73-97pp.
  40. Vitousek, P.M. (1997). Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications. 7: 737-750.
  41. Warham, E.J. (1990). Effect of Tilletia indica infection on viability, germination and vigour of wheat seed. Plant Disease. 74: 130-132.
  42. Wright, W.D. and Wilkinson, D.R. (1993). Automated Micro-Kjeldahl Nitrogen Determination: A method. American Environmental Laboratory. 93: 30-33.
  43. Yushmanov, S.V. and Chumakov, K.M. (1988). Algorithms for building maximum topological similarity phylogenetic trees. Molekularnaya Genetics Mikrobiologiyai Virusologiya. 3: 9-l 5 (in Russian).
  44. Zehr, J. P., Jenkins, B.D., Short, S. M. and Steward, G. F. (2003). Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environmental Microbiology. 7: 539-554.

Global Footprints