Legume Research

  • Chief EditorJ. S. Sandhu

  • Print ISSN 0250-5371

  • Online ISSN 0976-0571

  • NAAS Rating 6.80

  • SJR 0.391

  • Impact Factor 0.8 (2023)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Legume Research, volume 44 issue 8 (august 2021) : 962-966

Effect of Seed Invigouration Treatments on Physiological Parameters and Nodulation of Grain Cowpea [Vigna unguiculata (L.) Walp]

Anju B. Raj, Sheeja K. Raj
1Kerala Agricultural University, Department of Agronomy, College of Agriculture, Vellayani, Thiruvananthapuram-695 522, Kerala, India.
  • Submitted27-07-2019|

  • Accepted26-10-2019|

  • First Online 17-02-2020|

  • doi 10.18805/LR-4204

Cite article:- Raj B. Anju, Raj K. Sheeja (2021). Effect of Seed Invigouration Treatments on Physiological Parameters and Nodulation of Grain Cowpea [Vigna unguiculata (L.) Walp]. Legume Research. 44(8): 962-966. doi: 10.18805/LR-4204.
The experiment was conducted at Coconut Research Station, Balaramapuram with an objective to assess the effect of seed invigouration with ZnSO4 and borax alone and along with Trichoderma viride on physiological parameters and nodulation of grain cowpea. Seed invigouration treatments had significant effect on physiological parameters as well as nodulation parameters in grain cowpea. Leaf area index and total chlorophyll content were found to be higher in seeds primed in ZnSO4 0.025 and 0.05 per cent for 4h at both 30 and 60 days after sowing (DAS). From 30 to 60 DAS, crop growth rate (CGR) and relative growth rate (RGR) were the highest in seeds pelleted with borax 50 mg kg-1 seed and from 60 DAS to harvest, seeds primed in ZnSO4 0.05 per cent for 4h registered the highest CGR and RGR. Total number of nodules and effective nodules per plant were found to be higher in seeds pelleted with borax 50 and 100 mg kg-1 seed. However, the nodule fresh and dry weight were the highest in seeds primed in ZnSO4 0.05 per cent for 4h. Hence it can be concluded that compared to seed pelleting with borax, seed priming with ZnSO4 was found better for nodulation as well as better expression of physiological parameters in grain cowpea.
  1. Afzal, S., Akbar, N., Ahmad, Z., Maqsood, Q., Iqbal, M. A. and Aslam, M. R. (2013). Role of seed priming with zinc in improving the hybrid maize (Zea mays L.) yield. Am. Eur. J. Agric. Environ. Sci. 13 (3): 301-306.
  2. Afzal, I., Noor, M. A., Bakhtavar, M. A., Ahmad, A. and Haq, Z. (2015). Improvement of spring maize performance through physical and physiological seed enhancements. Seed Sci. Technol. 43 (2): 238-249.
  3. Amanullah, H., Rahman, Z. and Shah, P. (2008). Plant density and nitrogen effects on growth dynamics and light interception of maize. Arch. Agro. Soil Sci. 54: 401-411.
  4. Arun, M. N., Bhanuprakash, K., Hebbar, S. S. and Senthivel, T. (2017). Effects of seed priming on biochemical parameters and seed germination in cowpea [Vigna unguiculata (L.) Walp]. Legume Res. Int. J. 40 (3: 562-570.
  5. Bolanos, L., Cebrian, A., Redonto-Nieto, N., Rivilla, R. and Bonilla, I. (2001). Lectin like glycoprotein PsNLEC-1 is not correctly glycosylated and targeted in boron deficient pea nodules. Mol. Plant Microbe Interaction 14: 663-670.
  6. Brady, N. C. and Weil, R. R. (2002). The Nature and Properties of Soils, Upper Saddle River. Prentice Hall, New Jersey, 960p.
  7. Chomontowski, C., Wzorek, H. and Podlaski, S. (2019). Impact of sugar beet seed priming on seed quality and performance under diversified environmental conditions of germination, emergence and growth. J. Plant Growth Reg. https://doi.org/10.1007/s00344-019-09973-2.
  8. Das, S., Pareek, N., Raverkar, K. P., Chandra, R. and Kaustav, A. (2012). Effectiveness of micronutrient application and Rhizobium inoculation on growth and yield of chickpea. Int. J. Agric. Environ. Biotechnol. 5 (4): 445-452.
  9. Debnath, P., Pattanaaik, S. K., Sah, D., Chandra, G. and Pandey, A. K. (2018). Effect of boron and zinc fertilization on growth and yield of cowpea (Vigna unguiculata Walp.) in Inceptisols of Arunachal Pradesh. J. Indian Soc. Soil Sci. 66 (2): 229-234.
  10. Desta, Y., Habtegebrial, K. and Weldu, Y. (2015). Inoculation, phosphorous and zinc fertilization effects on nodulation, yield and nutrient uptake of faba bean (Vicia faba L.) grown on Calcaric cambisol of semiarid Ethiopia. J. Soil Sci. Environ. Manag. 6 (1): 9-15.
  11. Evans, G. C. (1972). The Quantitative Analysis of Growth. Blackwell Scientific Publications Oxford: 295p.
  12. Lhungdim, J., Chongtham, S. K., Koireng, R. J. and Neupane, M. P. (2014). Seed invigoration and yield of lentil (Lens culinaris Medikus) through seed priming under different seeding rates. Environ. Ecol. 32 (2): 527-531.
  13. Marsh D. B. and Waters L. J. (1985). Nodulation and N fixation in cowpea as influenced by zinc nutrition. J. Am. Soc. Horti. Sci. 110: 9-11.
  14. Sathiyanarayanan, G., Prakash, M. and Reka, M. (2015). Influence of seed hardening cum foliar spray treatments on biometric, physiological and yield parameters in black gram under dry land condition. Agric. Sci. Digest. 35 (1): 1-6.
  15. Shanti, K. V., Rao, V. P., Reddy, R. M., Reddy, S. M. and Rao, P. (1997). Response of hybrid and composite maize (Zea mays L.) to different levels of nitrogen. Indian J. Agric. Sci. 67 (8): 326-327.
  16. Sharma, A., Nakul, H. T., Jelgeri, B. R. and Surwenshi, A. (2010). Effect of micronutrients on growth, yield and yield components in pigeonpea (Cajanus cajan L. Millsp.). Res. J. Agric. Sci. 1 (2): 142-144.
  17. Shinde, P., Doddagoudar, S. R. and Vasudevan, S. N. (2017). Influence of seed polymer coating with micronutrients and foliar spray on seed yield of chickpea (Cicer arietinum L.). Legume Res. Int. J. 40 (4):132-135
  18. Shukla, U. C. and Yadav, O. P. (1982). Effect of phosphorus and zinc on nodulation and nitrogen fixation in chickpea (Cicer arietinum L.). Plant Soil. 65 (2): 239-248.
  19. Udvardi, M. and Poole, P. S. (2013). Transport and metabolism in legume-rhizobia symbioses. Annu. Rev. Plant Biol. 64: 781-805.
  20. Upadhyay, R. G. and Singh, A. (2016). Effect of nitrogen and zinc on nodulation, growth and yield of cowpea (Vigna unguiculata). Legume Res. Int. J. 39 (1): 149-151
  21. Watson, D. J. (1952). The physiological basis of variation in yield. In: Advances in Agronomy, Vol. 4, Academic Press, pp. 101-145.
  22. Watson, D. J. (1958). The dependence of net assimilation rate on leaf area index. Ann. Bot. 22 (11): 37-54.
  23. Yoshida, S., Forno, D. O., Cook, J. H. and Gomez, K. A. (1976). Laboratory Manual for Physiological Studies of Rice. International Rice Research Institute, Los Banos, Manila, Philippines, 82p.
  24. Zehirov, G. T. and Georgiev, G. I. (2003). Effects of boron starvation on the apoplastic and total solute concentrations influencing nodule growth and acetylene reduction rate. Bulg. J. Plant Physiol. 4:367-373. 

Editorial Board

View all (0)