Loading...

Evaluation of Groundnut (Arachis hypogaea) Cultivars for Destabilized Ecosystem of North Eastern Hill Region

DOI: 10.18805/LR-4202    | Article Id: LR-4202 | Page : 1240-1246
Citation :- Evaluation of Groundnut (Arachis hypogaea) Cultivars for Destabilized Ecosystem of North Eastern Hill Region.Legume Research.2021.(44):1240-1246
M.A. Ansari, B.U. Choudhury, S.S. Roy, S.K. Sharma, P.K. Saraswat, R.K. Mishra, I.M. Singh, A.L. Singh, B. Lal, N. Prakash rajpathologist@yahoo.com
Address : Indian Council of Agricultural Research (ICAR), Research Complex for North Eastern Hilly Region, Manipur Centre, Imphal-795 004, India and Umiam, Meghalaya.
Submitted Date : 24-07-2019
Accepted Date : 6-11-2019

Abstract

Performance of 27 improved groundnut cultivars were assessed for agronomic and physiological traits associated to improve the  productivity in degraded acid soils under rainfed hilly ecosystem. The cultivars ICGS- 76 and ICGV-86590 produced significantly (p<0.05) higher pod yield with more than 39% improvement over JL-24. The study also identified five more promising cultivars viz. ICGS-5, TKG-19 A, TG-37-A, GG-11 and GG-21 with 19-38% higher yield over the check. The low productivity of cereals in the acidic and moisture stressed Jhum degraded upland soils of rainfed hilly ecosystem of Eastern Himalayan Region is a major concern for socio-economic improvement of resource poor farmers. Adoption of these cultivars is expected to increase the productivity and net income to a tune of 93.2% without incurring any additional costs to the prevailing production system. 

Keywords

Rainfed groundnut Production efficiency Agronomic traits Production economics

References

  1. Ansari, M.A., Choudhary B.U., Prakash N. and Rajkhowa D.J. (2017). Comparative performance of maize (Zea mays L.) cultivars on productivity, quality, root dynamics and profitability in North Eastern Himalayan Region of India. Bangladesh J. Bot. 46(1):195-202. 
  2. Choudhury, B.U., Mohapatra, K.P., Das, A., Das P.T., Nongkhlaw, L., Fiyaz, A.R., Ngachan, S.V., Hazarika, S., Rajkhowa D.J. and Munda, G.C. (2013). Spatial variability in distribution of organic carbon stocks in the soils of North East India. Curr. Sci. 104:604-614.
  3. Das, A., S. Babu, G.S. Yadav, M.A. Ansari, R. Singh, L.K. Baishya, D.J. Rajkhowa, S.V. Ngachan. (2016). Status and strategies for pulses production for food and nutritional security in North-Eastern region of India. Indian. J. Agron. 61 (Special issue):43-57.
  4. Datta, M., Yadav, G.S. and Chakraborty S. (2016). Performances of groundnut varieties under sub-tropical climate of North East Hilly Agro-Ecological Region of India. Legume Res. 39(2):297-300.
  5. FAOSTAT. (2014). Food and Agricultural Organization of the United Nations Statistics Division. Available online from http://    www.fao.org /faostat/en/#data/QC. Accessed 23 Jan 2017.
  6. Frimpong, R.O., Konlan S.P. and Ninju D.N. (2017). Evaluation of selected groundnut (Arachis hypogaea L.) lines for yield and haulm nutritive quality traits. Int. J. Agron. https://    doi.org/10.1155/2017/7479309.
  7. Jnr, E.Z., Amade M., Amane M.I.V., Brandenburg R.L. and Mondjana A.M. (2017). Effect of harvesting time on groundnut yield and yield components in Northern Mozambique. J. Post harv. Techol. 5(2):55-63.
  8. Konlan, S., Sarkodie-addo, J., Asare, E. And Kombiok, M.J. (2013). Groundnut (Arachis hypogaea L.) varietal response to spacing in the Guinea savanna agro-ecological zone of Ghana: Growth and yield. Afr. J. Agric. Res. 8(22):2769- 2777.
  9. Misra, J.B. (2004). A mathematical approach to comprehensive evaluation of quality in groundnut. J. Food Compost. Anal. 17:69-79.
  10. Misra, J.B., Ghosh P.K., Dayal D. and Mathur R.S. (2000). Agronomic, nutritional and physical characteristics of some Indian groundnut cultivars. Indian J. Agr. Sci. 70:741-746.
  11. Nautiyal, P.C., Ravindra V., Rathnakumar A.L., Ajay B.C. and Zala P.V. (2012). Genetic variations in photosynthetic rate, pod yield and yield components in Spanish groundnut cultivars during three cropping seasons. Field Crops Res. 125: 83-91.
  12. Patiram. (2007). Management and future research strategies for enhancing productivity of crops on the acid soils. J. Indian. Soc. Soil Sci. 55(4):411-420.
  13. Phakamas, N., Patanothai A., Pannangpetch K., Jogloy S. and Hoogenboom G. (2008). Dynamic patterns of components of genotype environment interaction for pod yield of peanut over multiple years: A simulation approach. Field Crop. Res. 106:9-21.
  14. Singh, A.L. (2004). Growth and physiology of groundnut. In: Groundnut Research in India (Eds. M.S. Basu and N.B. Singh), National Research Center for Groundnut (ICAR), Junagadh, India. pp. 178-212.
  15. Singh, A.L., Nakar, R.N., Chaudhari, V., Chakraborty, K., Goswami, N., Kalariya, K.A., et al (2018). Physiological efficiencies of 186 peanut cultivars of various botanical groups. Indian J Expl Biology. 56 (12): 899-913.
  16. Singh, A.L., Basu, M.S. and Singh, N.B. (2003). Potential of Groundnut in North-eastern States of India. National Research Center for groundnut (ICAR), Junagadh, India. 76 p.
  17. Singh, A.L., Basu, M.S., Munda, G.C., Dutta, M., Singh, N.P., Patel, D.P. and Raychaudhuri, M. (2006). Groundnut Cultivation Technologies for North Eastern Hills of India. National Research Centre for Groundnut (ICAR), Junagadh, India. 50 p.
  18. Singh, A.L., Hariprassana K. and Solanki R.M. (2008). Screening and selection of groundnut cultivars for tolerance of soil salinity. Aus. J. Crop Sci. 1:69-77.
  19. Singh, P., Nedumaran S., Ntare B.R., Boote K.J., Singh N.P., Srinivas K. and Bantilan M.C.S. (2014). Potential benefits of drought and heat tolerance in groundnut for adaptation to climate change in India and West Africa. Mitig. Adapt. Strat. Gl. 19 (5): 509-529. http://oar.icrisat.org/6449/.
  20. Tajima, R., Abe J., Lee O.N., Morita S. and Lux A. (2008). Developmental changes in peanut root structure during root growth and root-structure modification by nodulation. Ann. Bot. 101:491-499. doi:10.1093/aob/mcm322.

Global Footprints