Loading...

Additive Main Effects and Multiplicative Interactions in Field Pea (Pisum sativum L.) Genotypes Across the Major Agro-climatic Zones in India

DOI: 10.18805/LR-4166    | Article Id: LR-4166 | Page : 894-899
Citation :- Additive Main Effects and Multiplicative Interactions in Field Pea (Pisum sativum L.) Genotypes Across the Major Agro-climatic Zones in India.Legume Research.2021.(44):894-899
Tufleuddin Biswas, Debasis Mazumdar, Arpita Das, P. Dinesh Kumar, Anirban Maji, A.K. Parihar and Sanjeev Gupta tufleuddinbiswas@gmail.com
Address : Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia-741 252, West Bengal, India.
Submitted Date : 15-05-2019
Accepted Date : 31-08-2019

Abstract

In agricultural experimentation, a large number of genotypes are normally evaluated over a wide range of environments for delineating stable genotypes. In this study, fifteen dwarf field pea genotypes were evaluated at six diverse locations under three Agro-climatic zones viz., Central zone, North West peninsular zone and North east peninsular zone for the purpose of identifying stable genotypes through deploying the additive main effects and multiplicative interaction (AMMI) model. The uniqueness of AMMI biplot is to provide comprehensive solution regarding multi-environment evaluation of genotype.  In addition to identification of stable genotypes, this approach facilitates  effective selection of test environment and allows optimum resource allocation in future testing programme. In the present study from the AMMI biplot and the ASV AMMI stability value (ASV), it was detected that genotypes 6 (Pant-P-345), 12 (KPF-14-50) and 4 (KPMR-940) were the stable genotypes amid the tested genotypes. These identified genotypes with wide adaptation would be valuable treasure troves for the breeder for utilizing as a parent in field pea breeding programme of India.

Keywords

AMMI Biplot Eigen value Field Pea Stability

References

  1. Project Coordinator’s Report. (2017). All India Co-ordinated Research Project on MULLaRP (Mung bean,Urd Bean, Lentil, Lathyrus, Rajmash and Pea), IIPR, Kanpur, India. 
  2. Adjebeng-Danquah, J., Manu-Aduening, J., Gracen, V. E., Asante, I. K., and Offei, S. K. (2017). AMMI stability analysis and estimation of genetic parameters for growth and yield components incassava in the forest and Guinea savannah ecologies of Ghana.    International J. Agron. 1-10.
  3. Akbarpour, O., Dehghani, H., Sorkhi, B. and Gauch Jr, H.G., (2014). Evaluation of Genotype × Environment Interaction in Barley (Hordeum vulgare L) based on AMMI model using developed SAS Program. J. Agr. Sci. Tech. 16: 909-920.
  4. Akcura, M., Kaya, Y., Taner, S. and Ayranci, R., (2006). Parametric stability analyses for grain yield of durum wheat. Plant Soil Env. 52(6):254-261.
  5. Annicchiarico, P., (2002). Genotype environment interactions challenge and opportunities for plant breeding and cultivar recommendations. Food and Agriculture Organization, 174p.
  6. Baker, R. J. (1990). Crossover genotype-environmental interaction in spring wheat. Genotype-by-environment interaction and plant breeding. Baton Rouge: Louisiana State Univ. 
  7. Banik, B.R., Khaldun, A.B., Mondal, A.A., Islam, A. and Rohman, M.M., (2010). Assessment of genotype-by environment interaction using additive main effects and multiplicative interaction model (AMMI) in maize (Zea mays L) Hybrids. Acad. J. Plant Sci., 3(4): 134-139.
  8. Bantayehu, M., (2009).Analysis and correlation of stability parameters in malting barley. African Crop Sci. J. 17(3): 145-153.
  9. Bavandpori, F., Ahmadi, J., and Hossaini, S. (2014). Yield stability analysis of bread wheat lines using AMMI model. Agri. Commun.
  10. 3(1): 8-15.
  11. Biswas, T., Mazumder, D. and Das, A., (2018).Discriminating parametric and non-parametric methods for stability and adaptability analysis. Rashi. 3(1): 39-45.
  12. Bose, L. K., Jambhulkar, N. N., Pande, K., and Singh, O. N. (2014). Use of AMMI and other stability statistics in the simultaneous selection of rice genotypes for yield and stability under direct-seeded conditions. Chilean J. of Agri. Res. 74(1): 3-9.
  13. Crossa, J., Fox, P.N., Pfeiffer, W.H., Rajaram, S. and Gauch, H.G., (1990). AMMI adjustment for statistical analysis of international wheat yield trial. Theor. Applied Gen. 81: 27-37.
  14. Das, A., Gupta, S., Parihar, A. K., Saxena, D., Singh, D., Singha, K. D. and Chandra, S. (2019). Deciphering genotype-by-environment interaction for targeting test environments and rust resistant genotypes in field pea (Pisum sativum L.). Frontiers Plant Sci. 10: 825. doi: 10.3389/fpls.2019.00825
  15. Ebdon, J.S. and Gauch, H.G., (2002). Additive main effect and multiplicative interaction analysis of national turfgrass performance trials II cultivar recommendations. Crop Sci. 42: 497-506.
  16. Fikere, M., Bing, D. J., Tadesse, T., and Ayana, A. (2014). Comparison of biometrical methods to describe yield stability in field pea (Pisum sativum L.) under south eastern Ethiopian conditions. African J. Agri. Res. 9(33): 2574-2583.
  17. Gauch, H.G., Piepho, H.P. and Annicchiarico, P., (2008). Statistical Analysis of Yield Trials by AMMI and GGE: Further Considerations. Crop Sci. 48(3): 866-889.
  18. Gauch, H.G. and Zobel, R.W., (1996). AMMI analyses of yield trials In: Genotype by environment interaction. Kang MS and Gauch HG (eds) CRC, Boca Raton, Florida, p. 85-122.
  19. Gauch, H.G., (1993). Statistical Analysis of Regional Yield Trials: AMMI analysis of factorial designs. Elsevier, London.
  20. Gollob, H.F., (1968). A statistical model which combines features of factor analytic and analysis of variance techniques. Psychometrika. 33: 73-115.
  21. Gregorius, H. R. and Namkoong, G. (1986). Joint analysis of genotypic and environmental effects. Theor. Applied Genet. 72 : 413-422.
  22. Ilker, E., Tonk, F.A., Caylak, O., Tosun, M. and Ozmeni, I., (2009). Assessment of genotype x environment interactions for grain yield in maize hybrids using AMMI and GGE biplot analyses. Turkish J. Field Crops. 14(2): 123–135.
  23. Lin, C.S., Binns, M.R. and Lefkovitch, L.P., (1986). Stability analysis: Where do we stand? Crop Science. 26: 894–900.
  24. Mahalingam, L., Mahendran, S., Chandra, B.R. and Atlin, G., (2006). AMMI analysis for stability of grain yield in rice (Oryza sativa L). International J. Bot. 2(2): 104-106.
  25. Malosetti, M., Ribaut, J. M., and van Eeuwijk, F. A. (2013). The statistical analysis of multi-environment data: modeling genotype-by-    environment interaction and its genetic basis. Frontiers Physiol. 4: 44.
  26. Mohebodini, M., Dehghani, H. and Hossain, S., (2006). Stability of performance in lentil (Lensculinaris medik) genotypes in Iran. Euphytica. 149: 343–352.
  27. Misra, R.C., Das, S. and Patnaik, M.C., (2009). AMMI model analysis of stability and adaptability of late duration finger millet (Eleusine coracana). World Applied Sci. J. 6(12): 1650-1654.
  28. Muhe, K. and Assefa, A., (2010). Genotypes × environment interaction in bread wheat (Triticum aestivum L) cultivar development in Ethiopia International Research. J. Plant Sci. 2(10): 317-322.
  29. Pacheco, A., Vargas, M., Alvarado, G., Rodríguez, F., López, M., Crossa, J. and Burgueño, J., (2016). GEA-R (Genotype x Environment Analysis with R for Windows) Version 4.0.CIMMYT Research Data and Software Repository Network.
  30. Purchase, J. L., Hatting, H., and Van Deventer, C. S. (2000). Genotype × environment interaction of winter wheat (Triticum aestivum L.) in South Africa: II. Stability analysis of yield performance. South African J. Plant and Soil. 17(3): 101-107.
  31. Rezene, Y., Bekele, A., and Goa, Y. (2014). GGE and AMMI biplot analysis for field pea yield stability in SNNPR state, Ethiopia.    International J. Sustainable Agri. Res. 1(1): 28-38.
  32. Rodriguez, M., Rau, D., Papa, R. and Attene, G., (2007). Genotype by environment interactions in barley (Hordeum vulgare L.): different responses of landraces, recombinant inbred lines and varieties to Mediterranean environment. Euphytica. 163(2): 231-247.
  33. Sadeghi, S.M., Samizadeh, H., Amiri, E. and Ashouri, M., (2011). Additive main effects and multiplicative interactions (AMMI) analysis of dry leaf yield in tobacco hybrids across environments. African J. Biotech. 10(21): 4358-4364.
  34. Singh, M., Ceccarelli, S. and Grando, S. (1999). Genotype x environment interaction of crossover type: detecting its presence and estimating the crossover point. Theor. Applied Genet. 99: 988-995.
  35. Taye, G., Getachew, T., and Bejiga, G. (2000). AMMI adjustment for yield estimate and classification of genotypes and environments in field pea (Pisum sativum L.). Journal Genet. 54(3): 183-191.
  36. Tolessa, T. T., Keneni, G., Sefera, T., Jarso, M. and Bekele, Y. (2013). Genotype× environment interaction and performance stability for grain yield in field pea (Pisum sativum L.) genotypes. International J. Plant Breed. 7(2): 116-123.
  37. Yan, W. and Kang, M.S., (2002). GGE biplot analysis: A graphical tool for breeders’ geneticists and agronomists. CRC Press, Boca Raton, Florida.
  38. Yan, W., Cornelius, P.L., Crossa, J. and Hunt, L.A., (2001). Two types of GGE biplots far analyzing multi-environment trial data. Crop Sci. 41: 656-663.
  39. Yan, W. and Hunt, L. A. (2002). Biplot analysis of diallel data. Crop Sci. 42: 21-30. doi:10.2135/cropsci2002.2100.
  40. Yan, W. and Rajcan, I., (2002). Biplots analysis of the test sites and trait relations of soybean in Ontario. Crop Sci. 42: 11-20.
  41. Yan, W., Kang, M.S., Ma, B., Woods, S. and Cornelius, P.L., (2007). GGE biplot vs AMMI analysis of genotype-by-environment data. Crop Sci. 47(2):643–655.
  42. Zobel, R.W., Wright, M.J. and Gauch, H.G., (1988). Statistical analysis of a yield trial. Agron. J. 80(3): 388-393. 

Global Footprints