Legume Research

  • Chief EditorJ. S. Sandhu

  • Print ISSN 0250-5371

  • Online ISSN 0976-0571

  • NAAS Rating 6.80

  • SJR 0.391

  • Impact Factor 0.8 (2023)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Legume Research, volume 44 issue 6 (june 2021) : 652-660

Screening of Fluorescent Pseudomonad Isolates Against Sclerotium Rolfsii Sacc., of Soybean (Glycine Max)

Priyanka, Geeta. Goudar
1Department of Agricultural Microbiology, University of Agricultural Sciences, Dharwad-580 005, Karnataka, India.
  • Submitted01-04-2019|

  • Accepted26-06-2019|

  • First Online 04-10-2019|

  • doi 10.18805/LR-4145

Cite article:- Priyanka, Goudar Geeta. (2019). Screening of Fluorescent Pseudomonad Isolates Against Sclerotium Rolfsii Sacc., of Soybean (Glycine Max). Legume Research. 44(6): 652-660. doi: 10.18805/LR-4145.
An attempt was made to isolate and characterize Fluorescent pseudomonads from the rhizosphere soil samples and further screening of the isolates for their antagonistic properties against Sclerotium rolfsii Sacc., of soybean. The isolates were subjected for morphological, biochemical and functional characterization. All the isolates exhibited fluorescence under UV light. Cells were rods and gram negative. All the isolates produced clear zone of P- solubilization (TCP) (18.80-21.71mm diameter) on Pikovskaya’s agar medium. The fluorescent pseudomonads produced significantly varying quantities of IAA (19.97 µg to 28.89 µg IAA/25 ml of broth) and GA (18.52 µg per 25 ml broth). All the isolates showed antagonistic activity against Sclerotium rolfsii. The per cent inhibition ranged from 36.85 to 70.37. Under pot culture experiment, lowest PDI was observed in DFP48 followed by DFP47, among the FP isolates. These isolates also showed maximum peroxidase activity and also plant growth promotional activities.
  1. Ahmadzadeh, M., Afsharmanesh, H., Javan, M. Sharifi, A. (2006). Identification of some molecular traits in fluorescent pseudomonads with antifungal activity. Iranian J. Biotechnol., 4(4) : 245-253. 
  2. Alam, G. (2000). A study of bio-pesticides and bio-fertilizers in Haryana, India gatekeeper no. SA93. Int. Inst. Environ. Devp. London, p.32. 
  3. Anand, M., Naik, M. K., Ramegowda, G., Devika Rani, G. S. (2010). Biocontrol and plant growth promotion activity of indigenous Pseudomonas fluorescens isolates. J. Mycopathol. Res., 48(1) : 45-50. 
  4. Anonymous, (1957). Manual of Microbiological Methods, McGraw Hill Book Company Inc., New York, p. 127. 
  5. Ashrafuzzaman, M., Hossen, F. A., Ismail, M. R., Hoque, M. A., Islam, M. Z., Shahidullah, S. M., Meon, S. (2009). Efficiency of plant growth promoting rhizobacteria for the enhancement of rice growth. African J. Biotechnol., 8 : 1247-1252. 
  6. Bakthavatchalu, S., Shivakumar, S., Sullia, S. B. (2012). Identification of multi-trait PGPR isolates and evaluation of their potential as biocontrol agents. Acta Biologica Indica, 1(1): 61-67. 
  7. Barthalomew, J. W. and Mittewar, T. (1950). A simplied bacterial stain. Stain Tech., 25: 153. 
  8. Bharathi, R., Vivekanandhan, R., Harish S., Ramanathan, A., Samiyap, R. (2004). Rhizobacteria-based bio-formulations for the management of fruit rot infection in chillies. Crop Prot., 23: 835-843. 
  9. Brown, V. I. and Lowbury, E. J. L. (1968). Use of an improved cetrimide agar medium and other culture methods for Pseudomonas aeruginosa. J. Clin. Path., 18: 752- 756.
  10. Cappuccino, J. G. and Sherman, N. (1992). Microbiology: A Laboratory Manual,The Benjamin/Cummins Publishing Company Inc., California, pp. 8-26. 
  11. Clarke, P H. (1982). The metabolic versatility of pseudomonads. Canadian J. Microbiol., 48(2): 105-130. 
  12. Egamberdieva, D. (2008). Alleviation of salinity stress in radishes with phytohormone producing rhizobacteria. J. Biotechnol., 136: 262.
  13. Haas, D. and Defago, G. (2005). Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol., 3: 307-319. 
  14. Indi, D. V. (2010). Studies on plant growth promoting fluorescent pseudomonads of Uttara Kannada district of Karnataka state, Ph. D. Thesis, Univ. Agric. Sci., Dharwad (India). 
  15. Kandoliya, U.K. and Vakharia, D.N. (2013). Antagonistic effect of Pseudomonas fluorescens against Fusarium oxysporum f.sp. Ciceri causing wilt in chickpea. Legume Research-An International Journal. 36:569-575. 
  16. Khalid, A., Arshad, M., Zahir, Z. A. (2003). Growth and yield response of wheat to inoculation with auxin producing plant growth promoting rhizobacteria. Pakistan J. Bot., 35 (4): 483-498.
  17. King, E. O., Ward, M. K., Raney, D. E. (1954). Two simple media for the demonstration of pyocyanin and fluorescin. J. Lab. Clin. Med., 44: 301-7. 
  18. Lugtenberg, B. J., Dekkers, L., Bloemberg, G. V. (2001). Molecular determinants of rhizosphere colonization by Pseudomonas. Annu. Rev. Phytopathol., 3: 461-490. 
  19. Lim, H. S., Kim, Y. S. and Kim, S. D. (1991). Pseudomonas stutzeri YPL-1 genetic transformation and antifungal mechanisms against Fusarium solani and agent of plant root rot. Appl. Environ. Microbiol., 57 : 510-516.
  20. Manivannan, M., Ganesh, P, Suresh, R., Tharmaraj, K., Shiney, B. (2012). Isolation, screening, characterization and antagonism assay of PGPR isolates from rhizosphere of rice plants in Cuddalore distric. Intl. J. Pharma. Biol. Arch., 3(1): 179-185. 
  21. Martinez, V. O, Jorquera, M. A., Crowley, D. E., Gajardo, G. and Mora, M. L. (2010). Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J. Soil Sci. Pl. Nutr., 10: 293-319. 
  22. Mayee, C. D. and Datar, V. V. (1986). Phytopathometry, Technical Bulletin-1 (Special Bulletin-3). Marathwada Agric. Uni., Parbhani, p. 95. 
  23. Mirza, M. S., Ahmad, W., Latif, F., Haurat, J., Bally, R., Normand, P., Malik, K. A. (2001). Isolation, partial characterization and the effect of plant growth promoting bacteria (PGPB) on micro propagated sugarcane in vitro. Pl. Soil. , 237 : 47-54. 
  24. Nihorembere, V., Ongena, M., Smargiass, M. (2011). Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnol. Agron. Soc. Environ. 15 (2): 327-337. 
  25. Osullivan, D. J. and Ogara, F. (1992). Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol., Rev., 56(4) : 662-676. 
  26. Pansey, V. S. and Sukhatme, P. V. (1985). Statistical Methods for Agricultural Work. ICAR, New Delhi, pp. 152-155. 
  27. Prasad, J. S., Jha, M., Kumar, R. N., Gupta, A. K. (2013). Isolation, screening and antagonism assay of Pseudomonas spp. for plant growth promoting activity and its compatibility with pesticide molecules. Bioinfolet, 10(4): 1487-1491.
  28. Priyanka., Geeta. Goudar., P. Jones Nirmal Nath., P. V. Patil. (2017). Isolation, characterization and antagonistic activity of Fluorescent Pseudomonads. Int. J. Curr. Microbiol. App. Sci., 6(12): 3883-3898.
  29. Raaijmakers, J. M. and Weller, D. M. (1998). Natural plant protection by 2, 4- diacetylphloroglucinol producing Pseudomonas sp. in take-all disease soils. Mole. Pl. Microbe Int., 11: 144-152.
  30. Rakh, R. R. (2011). Biological control of Sclerotium rolfsii, causing stem rot of groundnut by Pseudomonas spp. Recent Res. Sci. Technol., 3(3): 26-34. 
  31. Ramamoorthy, V., Raghuchander, T. and Samiyappan, R. (2002). Induction of defense-related proteins in tomato roots treated with Pseudomonas fluorescens Pf1 and Fusarium oxysporum f. sp. lycopersici. Pl. Soil, 239: 55-68. 
  32. Rashid, M., Khalil, S., Ayub, N., Alam, S., Latif, F. (2004). Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms (PSM) under in vitro conditions. Pakistan J. Biol. Sci., 7: 187-196. 
  33. Sarvanakumar, D., Vijaykumar, C., Kumar, N. and Samiyappan, R. (2007). ACC deaminase from Pseudomonas fluorescens mediate slime resistance in groundnut plants. J. Appl. Microbiol., 102: 1283-1292. 
  34. Saravanakumar, D., Harish, S., Loganathan, M., Vivekananthan, R., Rajendran, L., Raguchander, T. and Samiyappan, R. (2007a). Rhizobacterial bioformulation for the effective management of Macrophomina root rot in mungbean. Arch. Phytopathol. Pl. Prot., 40(5): 323-337. 
  35. Sarwar, M. and Kremer, R. J. (1992). Determination of bacterially derived auxins using a microplate method. Let. Appl. Microbiol., 20: 282-285.
  36. Sakthivel, N. and Gnanamanickam, S. S. (1987). Evaluation of Pseudomonas fluorescens for suppression of sheath rot disease and enhancement of grain yields in rice (Oryza sativa L.). Appl. Environ. Microbiol., 47 : 2056-2059. 
  37. Scarpellini, M., Franzetti, L. and Galli, A. (2004). Development of PCR assay to identify Pseudomonas fluorescens and its biotype. FEMS Microbiol. Lett., 236 : 257-260. 
  38. Sinclair, J. B. (1978). The seed borne nature of some soybean pathogens, the effect of Phomopsis Spp. and Bacillus subtilis on germination and their occurrence in soybean produced in Illionois. Seed Sci. Technol., 6: 957-964. 
  39. Sinclair, J. B. (1988). Anthracnose of soybean In : Soybean diseases of North Central region (Eds.) Wyllie, T. D and Suth, D. H. American phytopathological society, St. Paul, Minnesota, USA, p. 104. 
  40. Singh, Y., Ramteke, P. W. and Shukla, P. K. (2013). Isolation and characterization of heavy metal resistant Pseudomonas spp. and their plant growth promoting activities. Adv. Appl. Sci. Res., 4(1): 269-272. 
  41. Sivamani, E. and Gnanamanickam, S. S. (1988). Biological control of Fusarium oxysporum f.sp. cubense in banana by inoculation with Pseudomonas fluroscense. Pl. Soil, 107(2): 3-9. 
  42. Vishwanath, P., Shankar, S., Suvarna, V. C., Jayasheela. (2012). Biological control of collar rot of sunflower using rhizobacteria. Intl. J. Pl. Protect. 5(2): 391-393. 
  43. Vincent, J. M. (1947). Distortion of fungal hyphae in the presence of certain inhibitor. Nature, 159: 800. 
  44. Weller, D. M., Howke, W. J., Cook, R. J. (1988). Biological control of soil borne plant pathogens in the rhizosphere with bacteria. Phytopathol., 38 : 1094. 

Editorial Board

View all (0)