Advances in in vitro studies for genetic enhancement of blackgram: A review

DOI: 10.18805/LR-4114    | Article Id: LR-4114 | Page : 365-374
Citation :- Advances in in vitro studies for genetic enhancement of blackgram: A review.Legume Research-An International Journal.2021.(44):365-374
Paras Pandey, Meenal Rathore and N.P. Singh
Address : Division of Plant Biotechnology, Indian Institute of Pulses Research, Kanpur-208 024, Uttar Pradesh, India.
Submitted Date : 26-12-2018
Accepted Date : 25-06-2019


Black gram (Vigna mungo) is a treasure trove legume in terms of nutritional efficiency and medicinal values and an important pulse that is cultivated throughout India in all three seasons. However, its production and productivity is constrained due to abiotic and biotic stresses.Though technology has aided in genetic improvement of the crop, the narrow genetic base remains a potential constraint. In vitro regeneration and genetic transformation have aided to its genetic improvement, yet a lot remains to be explored and harnessed for efficient and effective genetic improvement of the pulse. The review highlights the progress and achievements in context of in vitro regeneration and genetic transformation in blackgram.  


Agrobacterium mediated transformation Blackgram In vitro regeneration


  1. Anonymous (2019). Sucess report 2018-19 entitled ‘Pulses revolution from food to nutritional security’ by crop division, Govt. of India, Ministry of Agriculture and farmer’s welfare .
  2. Adlinge P. M., Samal K. C., Kumara Swamy R. V. and Rout G. R. (2014). Rapid in vitro regeneration of black gram (Vigna mungo L. H.) var. Sarala, an important legume crop. Proceedings of National Academic Science India. 84(3): 823-827.
  3. Agnihotri S., Singh R., Chaturvedi H.C. (2001). In vitro high frequency regeneration of plantlets of Vigna mungo and their ex vitro growth. Indian J. Exp. Biol. 39: 916–920.
  4. Avenido R.A. and Hattori K. (1999). Differences in shoot regeneration response from cotyledonary node explant in asiatic Vigna species support genomic grouping within subgenus ceratotropin (Piper) verde. Plant Cell Tissue Organ Cult. 58: 99-100.
  5. Balaji V., Rajamuni P., Sridevi G. and Veluthambi K. (2003). Agrobacterium mediated transformation efficiency in blackgram and rice enhanced by multiple copies of pTiBo542 VirB and VirG. Indian J Biotechnology. 2: 138-146.
  6. Bhomkar P., Upadhyay C.P., Saxena M., Muthusamy A., Shiva Prakash N., Sarin N.B. (2008). Salt stress alleviation in transgenic Vigna mungo L. Hepper (Blackgram) by overexpression of the glyoxalase I gene using a novel Cestrum yellow leaf curling virus (CmYLCV) promoter. Mol. Breed. 22: 169-181.
  7. Chopra R. and Saini R. (2014). Transformation of blackgram (Vigna mungo L. H.) by barley chitinase and ribosome inactivating protein genes towards improving resistance to Corynespora leaf spot fungal disease. Applied Biochemistry Biotechnology. 174(8): 2791-2800.
  8. Das D.K., Prakash N.S. and Sarin N.B. (1998). An efficient regeneration system of blackgram (Vigna mungo L.) through organogenesis. Plant Science. 134(2): 199-206.
  9. Das D.K., Bhomkar P., Shiva Prakash N and Sarin N.B. (2002a). Improved method of regeneration of blackgram (Vigna mungo L.) Through liquid culture. In Vitro Cell Dev Biol- Plant. 38: 456-459.
  10. Das P.K., Roy M. and Mondal N. (2002b). In vitro organogenesis from shoot tip in blackgram. Indian J Genet Plant Breed, 62: 91-92.
  11. Eapen S. and George L. (1990). Ontogeny of somatic embryos of Vigna aconitifolia, Vigna mungo and Vigna radiata. Ann. Bot. 66: 219–226.
  12. Franklin G. and Ignacimuthu S. (2000). Differential morphogenetic response of cotyledonary explants of Vigna mungo. Biol Plant. 43: 1-4.
  13. Geetha N., Venkatachalan P. and Rao G.R. (1997a). Plant regeneration and plant propagation of blackgram (Vigna mungo L. H.) through tissue culture. J Trop Agric. 74: 73-76.
  14. Geetha N., Venkatachalam P. and Rao G. R. (1997b). In vitro plant regeneration from different seedling explants of blackgram (Vigna mungo L. Hepper) via organogenesis. Breed. Sci. 47: 311-315.
  15. Geetha N., Venkatachalan P. and Rao G. R. (1998). In vitro plant regeneration from shoot tip culture of blackgram (Vigna mungo (L.) Hepper. Tropic. Agric. 36(1/2): 6-11.
  16. Gill R., Eapen S. and Rao P.S. (1987) Morphogenetic studies of cultured cotyledons of urd bean (V.mungo L. Hepper). J. Plant Physiol. 130: 1–5.
  17. Goel S., Mudgal A.K, Gupta S.C. (1983) Development of plants from in vitro cultured shoot-tips of Vigna mungo and Vigna radiata. Trop Plant Sci Res.1: 31–33.
  18. Guruprasad M., Sridevi V. and Kumar M.S. (2014). Efficient plant regeneration from cotyledonary node of blackgram (Vigna mungo L. H.). IJABR. 5(1): 20-24.
  19. Harisanraj R., Sarvana B.S. and Suresh K. (2008). Callus induction and plant regeneration of Vigna mungo L.H. via half seed explant. Ethnobot leafl. 12: 577-585.
  20. Ignacimuthu S. and Franklin G. (1999). Regeneration of plantlets from cotyledon and embryonal axis explants of Vigna mungo L. Hepper. Plant Cell Tiss. Org. Cult. 55: 75–78.
  21. Ignacimuthu S., Franklin G. and Melchians G. (1997). Multiple shoot formation and in vitro fruiting from cotyledonary nodes of Vigna mungo L. Herpper. Curr Scie. 73: 733-735.
  22. Karthikeyan A.S., Sarma K.S., Veluthambi K. (1996). Agrobacterium tumefaciens-mediated transformation of Vigna mungo (L.) Hepper. Plant Cell Rep. 15: 328-331.
  23. Mony S.A., Haque M.S., Karim M. A. and Roy S.K. (2008). Callus induction and plantlet regeneration in blackgram (Vigna mungo L. HEPPER). Progress. Agric. 19(2): 27-35.
  24. Mony S.A., Haque M.S., Hassanuzamman M., Alam M.M. and Nahar K. (2010). Regeneration of blackgram (Vigna mungo) on change of hormonal condition. Not. Brot. Hort. Agrobot. Cluj. 38(3): 140-145.
  25. Muruganantham M. and Andy G. (2014). AgNO3 boosted high frequency shoot regeneration in (Vigna mungo L.) Hepper. Plant Signalling and Behaviour. 9: 10, e9722284-5. 
  26. Muruganantham M., Amutha S. and Ganapathi A. (2010) Somatic embryo production by liquid shake culture of embryogenic calluses in Vigna mungo (L.) Hepper. In Vitro Cell Dev Biol Plant. 46: 34-40;
  27. Murugunantham M., Amutha S., Selvaraj N., Vengadesan G. and Ganapathi A. (2007). Efficient Agrobacterium mediated transformation of Vigna mungo using immature cotyledonary node explants and phosphinothricin as the selection agent. In Vitro Cell Dev Biol Plant. 43: 550-557.
  28. Murugunantham M., Ganapathi A., Amutha S., Vengadesan G. and Selvaraj N. (2005). Shoot regeneration from immature cotyledonary nodes in blackgram (Vigna mungo L. H.). Indian J Biotechnol. 4: 551-555.
  29. Nukula S. K.and Anandan R. (2018) Studies on Agrobacterium mediated in planta genetic transformation in blackgram (Vigna mungo L.) cultivar VBN3. Int. J. Curr. Microbiol. App. Sci. 7(5): 273-287.
  30. Roy M., Mandal N. and Das P.K. (2003). Plantlet regeneration in blackgram from callus culture: Effect of genotype, explant and media composition. Legume Research- An International Journal. 26(4).
  31. Roy S.K., Haque M.S. and Siddiqua M.Q. (2007). Plant regeneration through multiple shoot formation in blackgram. Progress Agric. 18(2): 11-16.
  32. Saha P., Afrin M., Mohiuddin A.K.M. and Shohael A.M. (2017). Development of an effective in vitro regeneration protocol for BARI Mash2 (Vigna mungo L.) an important legume crop in Bangladesh. J. Biol. Sci. 6(1): 23-33.
  33. Sainger M., Chaudhary D., Dahiya S., Jaiwal R. and Jaiwal P.K. (2015). Development of an efficient in vitro plant regeneration system amenable to Agrobacterium mediated transformation of a recalcitrant grain legume blackgram (Vigna mungo L. H.). Physiol Mol Biol Plants. 21(4): 505-517.
  34. Saini R. and Jaiwal P.K. (2002). Age position in mother seedling, orientation and polarity of the epicotyl segments of blackgram (Vigna mungo L. H.) determines its morphogenic response. Plant Science. 163: 101-109. 
  35. Saini R. and Jaiwal P.K. (2005). Transformation of a recalcitrant grain legume, Vigna mungo L. Hepper, using Agrobacterium 
  36. tumefaciens-mediated gene transfer to shoot apical meristem cultures. Plant Cell Rep. 24: 164–171.
  37. Saini R. and Jaiwal P.K. (2007). Agrobacterium tumefaciens-mediated transformation of blackgram:an assessment of factors influencing the effeciency of uidA gene transfer. Biol. Plant. 51:69-74.
  38. Saini R., Jaiwal S., Jaiwal P.K. (2003). Stable genetic transformation of Vigna mungo L. Hepper via Agrobacterium tumefaciens. Plant Cell Rep. 21: 851–859.
  39. Sen J. and Guha-Mukherjee S. (1998). In vitro induction of multiple shoots and plant regeneration in Vigna. In Vitro Cell Dev. Biol. 34: 276–280.
  40. Sen J., Kalia S. and Guha-Mukherjee S. (2002). Level of endogenous free amino acids during various stages of culture of Vigna mungo (L.) Hepper- somatic embryogenesis, organogenesis and plant regeneration. Curr. Sci. 82: 429-433. 
  41. Singh P., Kumar D. and Sarin N. B. (2016). Multiple abiotic stress tolerance in Vigna mungo is altered by overexpression of ALDRXV4 gene via reactive carbonyl detoxification. Plant Mol Biol. 91(3): 257-273.
  42. Srilatha T. (2014). Direct plant regeneration from cotyledonary explants of blackgram (Vigna mungo L. Hepper). IJPBS. 5(2): (B) 491-    497.
  43. Srilatha T., Anithadevi U. and Ugandhar T. (2014). Efficient plant regeneration from nodal explant culture of blackgram (Vigna mungo L.) H. Bioscience Discovery. 5 (2): 131-138.
  44. Srivastava P. and Pandey A. (2011). Standardization of callus induction and plant regeneration form leaf explants of black gram (Vigna mungo var. silvestris) Int J Inn Biol Chem Sci. 1: 1–6.
  45. Varalaxmi Y., Prasanna A., Yadav S.K., Venkateswarlu B. and Maheswari M. (2013). Optimization of parameters for Agrobacterium mediated transformation of blackgram (Vigna mungo L. Hepper) using cotyledon explants. Afr J Biotechnol. 12(11): 1209-1215.
  46. Varalaxmi Y., Vijayalakshmi A., Yadav S.K., Venkateswarlu B. and Maheswari M. (2007). Efficient plant regeneration from cotyledons of black gram (Vigna mungo (L.) Hepper) (2007). Indian J Biotechnol. 6: 414–417. 

Global Footprints