Assessment of genetic divergence in horsegram [Macrotyloma uniflorum (Lam) Verdc.] using quantitative traits

DOI: 10.18805/LR-4103    | Article Id: LR-4103 | Page : 261-267
Citation :- Assessment of genetic divergence in horsegram [Macrotyloma uniflorum (Lam) Verdc.] using quantitative traits.Legume Research-An International Journal.2021.(44):261-267
S. Priyanka, R. Sudhagar, C. Vanniarajan and K. Ganesamurthy
Address : Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore-641 003, Tamil Nadu, India.
Submitted Date : 28-11-2018
Accepted Date : 1-03-2019


Genetic relatedness studies using 12 quantitative traits on 252 genotypes in horsegram revealed wide spectrum of variability for yield components. The genotypes were grouped into 25 clusters based on estimates of D2 statistic. Cluster I had the largest number with 83 genotypes followed by cluster II (77 genotypes), cluster IV (33 genotypes) and cluster III (30 genotypes). On the contrary, 20 solitary clusters from cluster V to XXV were formed except cluster XIV (9 genotypes) which could be given priority for specific trait improvement. Cluster XXI recorded the highest mean value for single plant yield (65.51 g). The intra and inter cluster distance was varying in magnitude indicating the presence of larger genetic diversity among accessions. The highest intra cluster distance was noticed in cluster XIV (23.63) followed by cluster IV (22.37). Maximum inter cluster distance was observed between solitary clusters viz., cluster XXI & XVII followed by cluster XXI & XV and cluster XXI & VII. These clusters would offer superior segregants when employed in hybridization programme.


Cluster distance D2 statistic Genetic divergence Horsegram Tocher’s value


  1. Anonymous, (2015). Agricultural Statistics at a Glance. DAC, Government of India.
  2. Bhardwaj, J. and Yadav, S.K. (2012). Comparative study on biochemical parameters and antioxidant enzymes in a drought tolerant and a sensitive variety of horsegram (Macrotyloma uniflorum) under drought stress. American Journal of Plant Physiology. 7: 17-29.
  3. Bravo, L., Siddhuraju, P., Saura-Calixto, F. (1999). Composition of under-exploited Indian pulses. Comparison with common legumes. Food chemistry. 64(2): 185-192.
  4. Dasgupta, T., Mukherjee, K., Roychoudhury, B., Nath, D. (2005). Genetic diversity of horsegram germplasms. Legume Research. 28(3): 166-171.
  5. Geetha, K., Mani, A.K., Hepziba, M.J., Latha, R., Shanthi, P. (2011). Studies on genetic diversity among germplasm accessions of horsegram (Macrotyloma uniflorum (Lam) Verde). Legume Research. 34(1): 14-19.
  6. Gomashe, S.S., Dikshit, N., Chand, D., Shingane, S.N. (2018). Assessment of genetic diversity using morpho-agronomical traits in horsegram. Int. J. Curr. Microbiol. App. Sci. 7(5): 2095-2103.
  7. Mahalanobis, P.C. (1936). A statistical study of Chinese head measurement. Journal of Asiatic Society of Bengal. 25: 301-377.
  8. Morris, J.B. (2008). Macrotyloma axillare and M. uniflorum: descriptor analysis, anthocyanin indexes, and potential uses. Genetic Resources and Crop Evolution. 55(1): 5-8.
  9. Murty, B.R. and Arunachalam, V. (1966). The nature of divergence in relation to breeding system in some crop plants. Indian Journal of Genetics and Plant Breeding. 26A: 188-198.
  10. Neelam, S., Kumar, V., Natarajan, S., Venkateshwaran, K., Pandravada, S.R. (2014). Evaluation and diversity observed in horsegram (Macrotyloma uniflorum (lam) Verdc.) germplasm from Andhra Pradesh, India. International Journal of Plant Research. 4(1): 17-22.
  11. Prasad, S.K. and Singh, M.K. (2015). Horsegram- an underutilized nutraceutical pulse crop: a review. Journal of Food Science and Technology. 52(5): 2489-2499.
  12. Purushottam, Rahul, K., Raju, B., Saren, B.K. (2017). Improvement of neglected horsegram production for benefit of mankind. Int. J. Bio-res. Env. Agril. Sci. 3(2): 521-527.
  13. Ramakrishnan, P., Babu, C., Iyanar, K. (2014). Genetic diversity in guinea grass (Panicum maximum Jacq.) for fodder yield and quality using morphological markers. Int. J. Plant Biol. Res. 2(1): 1006.
  14. Rao, C.R. (1952). Advanced Statistical Methods in Biometric Research. John Wiley and Sons, New York. pp. 126-152.
  15. Reddy, A.M., Kumar, S.G., Jyothsnakumari, G., Thimmanaik, S., Sudhakar, C. (2005). Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.). Chemosphere. 60: 97-104.
  16. Reddy, P.S., Ramanjulu, S., Sudhakar, C., Veeranjaneyulu, K. (1998). Differential sensitivity of stomatal and non-stomatal components to NaCl or Na2SO4 salinity in horsegram, Macrotyloma uniflorum (Lam.). Photosynthetica. 35(1): 99-105.
  17. Savithramma, D.L. and Shambulingappa, K.G. (1996). Genetic divergence studies in horsegram [Macrotyloma uniflorum (L.) Verdec]. Mysore J. Agric. Sci. 30: 223-229.
  18. Singhal, H.C., Tomar, S.S., Baraiya, B.R., Sikarwar, R.S., Tomar, I.S. (2010). Study of genetic divergence in horsegram (Macrotyloma uniflorum L.). Legume Research. 33(2): 119-123.
  19. Sodani, S.N., Paliwal, R.V., Jain, L.K. (2004). Phenotypic stability for seed yield in rainfed horsegram (Macrotyloma uniflorum (Lam.) Verdc.). In National Symposium on Arid Legumes for Sustainable Agriculture and Trade, pp. 5-7.
  20. Viswanatha, K.P., Yogeesh, L.N., Amitha, K. (2016). Morphological diversity study in horsegram (Macrotyloma uniflorum (Lam.) Verdc) based on Principal Component Analysis (PCA). Electronic Journal of Plant Breeding. 7(3): 767-770. 

Global Footprints