Legume Research

  • Chief EditorJ. S. Sandhu

  • Print ISSN 0250-5371

  • Online ISSN 0976-0571

  • NAAS Rating 6.67

  • SJR .391

  • Impact Factor .669 (2022)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Legume Research, volume 45 issue 7 (july 2022) : 793-803

Managing Water Stress by Potassium Fertilizer in Legumes for Sustainable Agricultural Intensification: A Review

Nisha Kataria, Narender Singh
1Department of Botany, Kurukshetra University, Kurukshetra-136 119, Haryana, India.
  • Submitted02-11-2018|

  • Accepted18-03-2021|

  • First Online 11-06-2021|

  • doi 10.18805/LR-4094

Cite article:- Kataria Nisha, Singh Narender (2022). Managing Water Stress by Potassium Fertilizer in Legumes for Sustainable Agricultural Intensification: A Review. Legume Research. 45(7): 793-803. doi: 10.18805/LR-4094.
Water stress has become the most uncontrolled and unpredictable factor, which is continuously limiting production in crops. Legumes are the major source of protein and are well-recognized for their nutritional benefits as well as their impact on the sustainability of agricultural systems are well known. Leguminous crops are severely affected by water stress causing alterations in various development processes. Proper nutrient management helps in attaining economical legume yields from drought-prone lands. The protective role of potassium in plants suffering from water stress has been documented and it positively influences plant capacity to adjust water stress conditions. This review compromises the information on the water stress-induced harmful effects on legumes growth, nitrogen fixation, gaseous exchange and mineral uptake parameters and proposes appropriate management by potassium application to alleviate the severity of water stres on above mentioned parameters. Application of potassium proved to meet higher yield from legume on cultivation under low/residual soil moisture availability conditions.
  1. Abbasi, M.K., Tahir, M.M., Azam, W., Abbas, Z. and Rahim, N. (2012). Soybean Yield and chemical composition in Response to Phosphorus-Potassium Nutrition in Kashmir. Agronomy Journal. 104: 1476-1484.
  2. Abd-Alla, M.H. and Abdel Wahab, A.M. (1995). Response of nitrogen fixation, nodule activities and growth to potassium supply in water-stressed broad bean. Journal of Plant Nutrition. 18: 1391-1402.
  3. Abdela, A.A., Barka, G.D., and Degefu, T. (2020). Co-inoculation effect of Mesorhizobium ciceri and Pseudomonas fluorescens on physiological and biochemical responses of Kabuli chickpea (Cicer arietinum L.) during drought stress. Plant Physiology Reports. 25: 359-369.
  4. Abdel Wahab, A.M., and Abd-Alla, M.H. (1995). The role of potassium fertilizer in nodulation and nitrogen fixation of faba bean (Vicia faba L.) plants under drought stress. Biology and Fertility of Soils. 20: 147-150.
  5. Abdelhamid, M., Kamel, H. and Dawood, M. (2011). Response of non-nodulating, nodulating, and super-nodulating soybean genotypes to potassium fertilizer under water stress. Journal of Plant Nutrition. 34: 1675-1689.
  6. Abid, G., Mahmoud, M., Mingeot, D. and Aouida, M. (2016). Effect of drought stress on chlorophyll fluorescence, antioxidant enzyme activities and gene expression patterns in faba bean (Vicia faba L.). Archives of Agronomy and Soil Science. 63: 536-552.
  7. Adhikari, B., Dhungana, S.K., Kim, I.D. and Shin, D.H. (2019). Effect of foliar application of potassium fertilizers on soybean plants under salinity stress. Journal of the Saudi Society of Agricultural Sciences. 19: 261-269.
  8. Ahanger, M.A., Agarwal, R.M., Tomar, N.S. and Shrivastava, M. (2015). Potassium induces positive changes in nitrogen metabolism and antioxidant system of oat (Avena sativa L cultivar Kent). Journal of Plant Interactions. 10: 211-223.
  9. Ahmad, P., Jaleel, C.A., Salem, M.A., Nabi, G., and Sharma, S. (2010). Roles of enzymatic and non-enzymatic antioxidants in plants during abiotic stress. Critical Reviews in Biotechnology. 30: 161-175.
  10. Ahmed, F.E. and Suliman, A.S.H. (2010). Effect of water stress applied at different stages of growth on seed yield and water-use efficiency of cowpea. Agriculture and Biology Journal of North America. 1: 534-540.
  11. Alam, M.M., Nahar, K., Hasanuzzaman, M. and Fujita, M. (2014). Alleviation of osmotic stress in Brassica napus, B. campestris and B. juncea by ascorbic acid application. Biologia Plantarum. 58: 697-708.
  12. Al-Amri, S.M. (2019). Differential response of faba bean (Vicia faba L.) plants to water deficit and water logging stresses. Applied Ecology and Environmental Research. 17: 6287-    6298.
  13. Ali H.M., Siddiqui, M.H., Al-whaibi, M.H., Basalah, M.O., Sakran, A.M. and El-zaidy, M. (2013). Effect of proline and abscisic acid on the growth and physiological performance of faba bean under water stress. Pakistan Journal of Botany. 45: 933-940.
  14. Almodares, A., Taheri, R., Chung, I.M. and Fathi, M. (2008). The effect of nitrogen and potassium fertilizers on growth parameters and carbohydrate contents of sweet sorghum cultivars. Journal of Environmental Biology. 29: 849-52.
  15. Amanullah, D.R., Iqbal, A., Irfanullah. and Hidayat, Z. (2016). Potassium Management for Improving Growth and Grain Yield of Maize (Zea mays L.) under Moisture Stress Condition. Scientific Reports. 6: 34627. 
  16. Amede, T. and Schubert, S. (2005). Mechanisms of drought resistance in grain: II Stomatal regulation and root growth. SINET Ethiopian Journal of Science. 26: 137-144.
  17. Anderson, M.N., Jensen, C.R. and Losch, R. (1992). The interaction effects of potassium and drought in field-grown barely. I. Yield, water use efficiency and growth. Acta Agriculturae Scandinavica. 42: 34-44.
  18. Andriani, J.M., Andrade, F.H., Suero, E.E. and Dardanelli, J.L. (1991). Water deficits during reproductive growth of soybeans. Their effects on dry matter accumulation, seed yield and its components. Agronomie. 11: 737-746.
  19. Arrese-Igor, C., Gonzalez, E.M., Marino, D., Ladrera, R., Larrainzar, E. and Gil-Quintana, E. (2011). Physiological response of legumes nodules to drought. Plant Stress. 5: 24-31.
  20. Ashraf, M. and Ibram, A. (2005). Drought stress induced changes in some organic substances in nodules and other plant parts of two potential legumes differing in salt tolerance. Flora. 200: 535-546.
  21. Ashraf, M.Y., Ali, S.A. and Bhatti, A.S. (1998). Nutritional imbalance in wheat genotypes grown at soil water stress. Acta Physiologiae Plantarum. 20: 307-310.
  22. Atti S., Bonnell R., Smith D. and Prasher S. (2004). Response of an indeterminate soybean (Glycine Max (L.) Merr) to chronic water deficit during reproductive development under greenhouse conditions. Canadian Water Resources Journal. 29: 209-222.
  23. Ayub, M., Nadeem, M.A., Naeem, M., Tahir, M., Tariq, M. and Ahmad, W. (2012). Effect of different levels of P and K on growth, forage yield and quality of cluster bean (Cyamopsis tetragonolobus L.). Journal of Animal and Plant Sciences. 22: 479-483.
  24. Baloch, M.S., Raza, M.H, Sadozai, G.U, Khan, E.A., Din, I. and Wasim, K. (2012). Effect of Irrigation Levels on Growth and Yield of Mungbean. Pakistan Journal of Nutrition. 11: 974-977.
  25. Barrios, A.N., Hoogenboom, G. and Nesmith, D.S. (2005). Drought stress and the distribution of vegetative and reproductive traits of a bean cultivar. Scientia Agricola. 62: 18-22.
  26. Becana, M., Dalton, D.A., Moran, J.F., Iturbe-Ormaetxe, I., Matamoros, M.A. and Rubio, M.C. (2000). Reactive oxygen species and antioxidants in legume nodules. Physiologia Plantarum. 109: 372-381.
  27. Behboudian, M.H., Ma, Q., Turner, N.C. and Palta, J.A. (2001). Reactions of chickpea to water stress: yield and seed composition. Journal of the Science of Food and Agriculture. 81: 1288-1291.
  28. Benlloch-Gonzalez, M., Romera, J., Cristescu, S., Harren, F., Fournier, J.M. and Benlloch, M. (2010). K+ starvation inhibits water-stress-induced stomatal closure via ethylene synthesis in sunflower plants. Journal of Experimental Botany. 61: 1139-1145.
  29. Cakmak, I. (2005). The role of potassium in alleviating detrimental effects of abiotic stresses in plants. Journal of Plant Nutrition. 168: 521-530.
  30. Cruz, M.H., Laffray, D. and Louguet, P. (1998). Comparison of the physiological responses of Phaseolus vulgaris and Vigna unguiculata cultivars when submitted to drought conditions. Environmental and Experimental Botany. 40: 197-207.
  31. Demidchik, V. (2015). Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environmental and Experimental Botany. 109: 212-228.
  32. Demirta, C., Yazgan, S., Candogan, B., Sincik, M., Buyukcangaz, H. and Goksoy, A. (2010). Quality and yield response of soybean (Glycine max L. Merrill) to drought stress in sub-humid environment. African Journal of Biotechnology. 9: 6873-6881.
  33. Djekoun, A. and Planchon, C. (1991). Water status effect on dinitrogen fixation and photosynthesis in soybean. Agronomy Journal. 83: 316-322.
  34. El-Enany, A.E., AL-Anazi, A.D., Dief, N., and Al-Taisan, W.A. (2013). Role of antioxidant enzymes in amelioration of water deficit and water logging stresses on Vigna sinensis plants. Journal of Biology and Earth Sciences. 3: 44-53.
  35. Emam, S.M. and Semida, W.M. (2020). Foliar-applied Amcoton® and potassium thiosulfate enhances the growth and productivity of three faba beans varieties by improving photosynthetic efficiency. Archives of Agriculture and Environmental Science. 5: 89-96.
  36. Erel, R., Yermiyahu, U., Ben-Gal, A., Dag, A., Shapira, O. and Schwartz, A. (2015). Modification of non-stomatal limitation and photoprotection due to K and Na nutrition of olive trees. Journal of Plant Physiology. 177: 1-10.
  37. Farooq, U. and Bano, A. (2006). Effect of Abscisic acid and Chlorocholine chloride on nodulation and biochemical content of Vigna radiata L. under water stress. Pakistan Journal of Botany. 38: 1511-1518.
  38. Figueiredo, M.V.B., Burity, H.L.A., Martinez, C.R. and Chanway, C.P. (2008). Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Applied Soil Ecology. 40: 182-188.
  39. Flexas J., Bota J., Galmes J., Medrano H. and Ribas-Carbo M. (2006). Keeping a positive carbon balance under adverse conditions: responses of photosynthesis and respiration to water stress. Physiologia Plantarum. 127: 343-352.
  40. Flexas, J., Galmes, J., Ribas-Carbo, M. and Medrano, H. (2005). The effects of drought in plant respiration. In: Lambers H, Ribas-Carbo M (eds). Advances in Photosynthesis and Respiration 18. Plant Respiration: from Cell to Ecosystem. Kluwer Academic Publishers, Dordrecht. 85-94.
  41. Fooladivanda, Z., Hassanzadehdelouei, M. and Zarifinia, N. (2014). Effects of Water Stress and Potassium on Quantity Traits of Two Varieties of Mung Bean (Vigna radiata L.). Cercetari Agronomice in Moldova. 47: 107-114.
  42. Galevz, L., Gonzalez, M.E., and Arrese-Igor, C. (2005). Evidence for carbon flux shortage and strong carbon/nitrogen interactions in pea nodules at early stages of water stress. Journal of Experimental Botany. 56: 2551-2561.
  43. Ganjeali, A., Porsaa, H. and Bagheri, A. (2011). Assessment of Iranian chickpea (Cicer arietinum L.) germplasms for drought tolerance. Agricultural Water Management. 98: 1477-1484.
  44. Ghashghaie, J., Duranceau, M., Badeck, F.W., Cornic, G., Adeline, M.T. and Deleens, E. (2001). d13C of CO2 respired in the dark in relation to d13C of leaf metabolites: Comparison between Nicotiana sylvestris and Helianthus annuus under drought. Plant Cell and Environment. 24: 505-515.
  45. Ghassemi-golezani, K., Ghassemi, S. and Bandehhagh, A. (2013). Effects of water supply on field performance of chickpea (Cicer arietinum L.) cultivars. International Journal of Agronomy and Plant Production. 4: 94-97.
  46. Ghassemi-Golezani, K. and Lotfi, R. (2012). Response of soybean cultivars to water stress at reproductive stages. International Journal of Plant, Animal and Environmental Sciences. 2:198-202.
  47. Gonalez, E.M., Gordon, A.J., James, C.L. and Arrese-Igor, C. (1995). The role of sucrose synthase in the response of soybean nodules to drought. Journal of Experimental Botany. 46: 1515-1523.
  48. Guerin, V., Trinchant, J.C., and Rigaud, J. (1990). Nitrogen fixation (C2H2 reduction) by broad bean (Vicia faba) nodules and bacteroids under water-restricted conditions. Plant Physiology. 92: 595-601.
  49. Guerin,V., Pladys,D., Trinchant, J.C., and Rigaud, J. (2006). Proteolysis and nitrogen fixation in faba-bean (Vicia faba) nodules under water stress. Physiologia Plantarum. 82: 360-366.
  50. Guneri, E., Gunes, A., Inal, A. and Adak, M.S. (2018). Effect of Drought Stress on Sensitivities and Yields of Chickpea (Cicer arietinum L.) cultivars. Yuzuncu Yil University Journal of Agricultural Sciences. 28: 180-189.
  51. Hatami, H., Ayenehband, A., Azizi, M., Soltani, A. and Dadkhan, A.R. (2010). Effect of potassium fertilizer on growth and yield of soybean cultivars in North Khorasan. Journal of Crop Ecophysiology. 2: 75-90.
  52. Haupt-Herting, S., Klug, K. and Fock, H.P. (2001). A new approach to measure gross CO2 fluxes in leaves. Gross CO2 assimilation, photorespiration, and mitochondrial respiration in the light in tomato under drought stress. Plant Physiology. 126: 388-396.
  53. Hoekstra, F.A., Golovina, E.A. and Buitink, J. (2001). Mechanism of plant desiccation tolerance. Trends in Plant Science, 6, 431-438.
  54. Horvath, B., Domonkos, A., Kereszt, A., Szucs, A., AbrahAm, E. and Ayaydin, F. (2015). Loss of the nodule-specific cysteine rich peptide, NCR169, abolishes symbiotic nitrogen fixation in the Medicago truncatula dnf 7 mutant. Proceedings of the National Academy of Sciences of the U.S.A. 112: 15232-15237.
  55. Hu, Y., and Schmidhalter. U. 2005. Drought and salinity: A. comparison of their effects on mineral nutrition of plants. Journal of Plant Nutrition and Soil Science. 168: 541-549.
  56. Hussain, M., Farooq, S., Hasan, W., Ul-allah, S. and Tanveer, M. (2018). Drought stress in sunflower: Physiological effects and its management through breeding and agronomic alternatives. Agricultural Water Management Journal. 201: 152-166.
  57. Jatav, K.S., Agarwal, R.M., Tomar, N.S. and Tyagi, S.R. (2014). Nitrogen metabolism, growth and yield responses of wheat (Triticum aestivum L) to restricted water supply and varying potassium treatments. Journal of the Indian Botanical Society. 93:177-189.
  58. Jiang, F. and Hartung, W. (2007). Long-distance signalling of abscisic acid (ABA): The factors regulating the intensity of the ABA signal. Journal of Experimental Botany. 59: 37-43.
  59. Kafkafi, U., Xu, G., Imas, P., Magen, H. and Tarchitzky, J. (2001). Potassium and Chloride in Crops and Soils: The Role of Potassium Chloride Fertilizer in Crop Nutrition; IPI Research Topics No. 22; International Potash Institute: Horgen, Switzerlands. 2001: p. 220. 
  60. Kataria, N. and Singh, N. (2014). Assessing the effects of applied potassium on selected Vigna radiata L. genotypes under water deficit. International Journal of Advanced Research. 2: 369-385.
  61. Kataria, N. and Singh, N. (2020). Role of Potassium on Growth, Nitrogen Fixation and Biochemical Traits in [Vigna radiata (L.) Wilczek] under Water Stress. Legume Research, online article. 1-8. 
  62. Krauss A. and Johnston, A.E. (2002). Assessing soil potassium, can we do better? Proc. 9th Int. Cong. Soil. Sci. Faisalabad, Pakistan.
  63. Kunert K.J., Vorster B.J., Fenta B.A., Kibido T., Dionisio G. and Foyer C.H. (2016). Drought Stress Responses in Soybean Roots and Nodules. Frontiers in Plant Science. 7: 1015. 
  64. Kurdali, F., Farid, A. and Shamma, M.A. (2002). Nodulation, dry matter production and N2 fixation by fababean and chickpea as affected by soil moisture potassium fertilizer. Journal of Plant Nutrition. 25: 355-368.
  65. Kusvuran, S., Dasgan, H.Y. and Abak, K. (2011). Responses of different melon genotypes to drought stress. Journal of Agricultural Science. 21: 209-219.
  66. Lambers, H., Robinson, S.A. and Ribas-Carbo, M. (2005). Regulation of respiration in vivo. The effects of drought in plant respiration. In: Lambers H, Ribas-Carbo M (eds) Advances in Photosynthesis and Respiration 18. Plant Respiration: From Cell to Ecosystem. Kluwer Academic Publishers, Dordrecht. 1-15.
  67. Lawlor, D.W. and Cornic, G. (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell and Environment. 25: 275-294.
  68. Lee, S.H., Woo, S.Y. and Je, S.M. (2015). Effects of elevated CO2 and water stress on physiological responses of Perilla frutescens var. japonica HARA. Plant Growth Regulators. 75: 427-434.
  69. Leport, L., Turner, N.C., Davies, S.L., and Siddique, K.H.M. (2006). Variation in pod production and abortion among chickpea cultivars under terminal drought. European Journal of Agronomy. 24: 236-246.
  70. Li, P., Zhang, Y., Wu, X. and Liu, Y. (2018). Drought stress impact on leaf proteome variations of faba bean (Vicia faba L.) in the Qinghai–Tibet Plateau of China. 3 Biotech. 8: 110.
  71. Lobato, A.K.S., Costa, R.C.L., Oliveira, N.C.F., Santos, F.B.G., GoncalvesVidigal, M.C., Vidigal Filho, P.S., Silva, C.R., Cruz, F.J.R., Carvalho, P.M.P., Santos, P.C.M., Gonela, A. (2009). Consequences of the water deficit on water relations and symbiosis in Vigna unguiculata cultivars. Plant Soil and Environment. 55: 139-145.
  72. Lobato, A.K.S., Oliveira N.C.F., Costa, R.C.L., Santos F.B.G., Cruz, F.J.R. and Laughinghouse, H.D. (2008). Biochemical and physiological behavior of Vigna unguiculata (L.) Walp. under water stress during the vegetative phase. Asian Journal of Plant Sciences. 7: 44-49.
  73. Lopez, F.B., Chauhan, Y.S., and Johansen, C. (1997). Effects of timing of drought stress on leaf area development and canopy light interception of short-duration pigeonpea. Journal of Agronomy and Crop Science. 178: 1-7.
  74. Mafakheri, A., Siosemardeh, A., Bahramnejad, B., Struik, P.C., and Sohrabi, E. (2010). Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Australian Journal of Crop Science. 4: 580-585.
  75. Majeed, S., Akram, M., Malik, M., Ijaz, M., and Hussain, M. (2016). Mitigation of drought stress by foliar application of salicylic acid and potassium in mungbean (Vigna radiata L.). Legume Research. 39: 208-214.
  76. Manivannan, P., Jaleel, C.A., Kishorekumar, A., Sankar, B., Somasundaram, R., Sridharan, R. and Panneerselvam, R. (2007). Changes in antioxidant metabolism of Vigna unguiculata (L.) Walp. by propiconazole under water deficit stress. Colloids and Surfaces B. 57: 69-74.
  77. Marquez-Garcia, B., Shaw, D., Cooper, J.W., Karpinska, B., Quain, M.D. and Makgopa, E.M. (2015). Redox markers for drought-induced nodule senescence, a process occurring after drought-induced senescence of the lowest leaves in soybean (Glycine max Merr.). Annals of Botany. 116: 497-510.
  78. Martineau, E., Domec, J.C., Bosc, A., Denoroy, P., Fandino, V.A., Jrb, J.L., and Jordan-Meille, L. (2017). The effects of potassium nutrition on water use in field-grown maize (Zea mays L.). Environmental and Experimental Botany. 134: 62-71.
  79. Mengel, K., Haghparast, M.R. and Koch K. (1974). The Effect of Potassium on the Fixation of Molecular Nitrogen by Root Nodules of Vicia faba. Plant Physiology. 54: 535-538. 
  80. Mergaert, P., Nikovics, K., Kelemen, Z., Maunoury, N., Vaubert, D. and Kondorosi, A. (2003). A novel family in Medicago truncatula consisting of more than 300 nodule-specific genes coding for small, secreted polypeptides with conserved cysteine motifs. Plant Physiology. 1320: 161-173.
  81. Miao, S., Shi, H., Jin, J., Liu, J., Liu, X. and Wang, G. (2012). Effects of short-term drought and flooding on soybean nodulation and yield at key nodulation stage under pot culture. Journal of Food Agriculture and Environment. 10: 819-824.
  82. Mohammadkhani, N. and Heidari, R. (2007). Effects of water stress on respiration, photosynthetic pigments and water content in two maize cultivars. Pakistan Journal of Biological Sciences. 10: 4022-4028.
  83. Monakhova O.F., and Chernyadev I.I. (2002). Protective role of kartolin-4 in wheat plants exposed to soil drought. Applied and Environmental Microbiology. 38: 373-380.
  84. Mukane, M.A., Chavan, V.D. and Desai, B.B. (1993). Effect of water stress on metabolic alterations in Pigempea (Cajanus Cajan (L.) Millspaugh) genotypes. Legume Research. 16: 45-50.
  85. Muneer, S., Ahmad, J., Bashir, H., and Qureshi, M.I. (2012). Proteomics of nitrogen fixing nodules under various environmental stresses. Plant Omics. 5: 167-176.
  86. Nandwal, A.S., Bharti, S., Kuhad, M.S. and Sheoran, I.S. (1991). Drought effects on carbon exchange and nitrogen fixation in pigeon pea (Cajanus cajan L.). Journal of Plant Physiology. 138: 125-127.
  87. Nandwal, A.S., Hooda, A. and Datta, D. (1998). Effects of substrate moisture and potassium on water relations and C, N and K distribution in Vigna radiata. Biologia Plantarum. 41: 149-153.
  88. Navabpour, S., Morris, K., Allen, R., Harrison, E., Mackerness, S.A.H. and Buchanan-Wollaston, V. (2003). Expression of senescence enhanced genes in response to oxidative stress. Journal of Experimental Botany. 54: 2285-2292.
  89. Nguyen, H.T., Nguyen, A.T., Lee, B.W., and Schoenau, J. (2002). Effects of long-term fertilization for cassava production on soil nutrient availability as measured by ion exchange membrane probe and by corn and canola nutrient uptake. Korean Journal of Crop Science. 47: 108-115.
  90. Noctor, G., Veljovic-Jovanovic, S., Driscoll, S., Novitskaya, L. and Foyer, C. (2002). Drought and oxidative load in the leaves of C3 plants: A predominant role for photorespiration? Annals of Botany. 89: 841-850.
  91. Oddo, E., Inzerillo, S., La-Bella, F., Grisafi, F., Salleo, S. and Nardini, A. (2011). Short term affects of potassium fertilization on the hydraulic conductance of Laurus nobilis L. Tree Physiology. 31: 131-138.
  92. Ohashi, Y., Saneoka, H., Matsumoto , K., Ogata , S., Premachandra, G.S. and Fujita, K. (1999). Comparison of water stress effects on growth, leaf water status, and nitrogen fixation activity in tropical pasture legumes siratro and desmodium with soybean, Soil Science and Plant Nutrition. 45: 795-802.
  93. Pang, J., Turner, N.C., Khan, T., Du, Y.L., Xiong, J.L., Colmer, T.D., Devilla, R., Stefanova, K., and Siddique, K. (2017). Response of chickpea (Cicer arietinum L.) to terminal drought: leaf stomatal conductance, pod abscisic acid concentration and seed set. Journal of Experimental Botany. 68: 1973-1985. 
  94. Pasandi, M., Janmohammadi, M. and Karimizadeh, R. (2014). Evaluation of genotypic response of kabuli chickpea (Cicer arietinum L.) cultivars to irrigation regimes in northwest of iran. Agriculture. 60: 22-30.
  95. Patnik, N. (2003). Soil fertility and fertilizer use- In: Viswanath, C.S. (ed.): Handbook of Agriculture. pp. 203-247. Indian council of Agricultural Reaserch. New Delhi.
  96. Pena-Cabriales, J.J., and Castellanos, J.Z. (1993). Effects of water stress on N2 fixation and grain yield of Phaseolus vulgaris L. Plant and Soil. 152: 151-155.
  97. Pimratch, S., Jogloy, S., Vorasoot, N., Toomsan, B., Kesmala, T., Patanothai, A. and Holbrook, C.C. (2008). Effect of drought stress on traits related to N2 fixation in eleven peanut (Arachis hypogaea L.) genotypes differing in degrees of resistance to drought. Asian Journal of Plant Sciences. 7: 334-342.
  98. Plies-Balzer, E., Kong, T., Schubert, S. and Mengel, K. (1995). Effect of water stress on plant growth, nitrogenase activity and nitrogen economy of four different cultivars of Vicia faba L. European Journal of Agronomy. 4: 167-173. 
  99. Ramos, M.L.G., Parsons, R., Sprent, J.I., and James, E.K. (2003). Effect of water stress on nitrogen fixation and nodule structure of common bean. Pesquisa Agropecuaria Brasileira. 38: 339-347.
  100. Ribas-Carbo, M., Taylor, N.L., Giles, L., Busquets, S., Finnegan, P.M., Day, D.A., Lambers, H., Medrano, H., Berry, J.A. and Flexas, J. (2005). Effects of water stress on respiration of soybean leaves. Plant Physiology. 139: 466-473.
  101. Sadeghipour O. (2008). Effect of withholding irrigation at different growth stages on yield and yield components of mung bean (Vigna radiata L. Wilczek) varieties. American-Eurasian Journal of Agricultural and Environmental Science. 4: 590-594.
  102. Samar R.M.A., Farrukh Saleem, M., Mustafa Shah, G., Jamil, M.    and Haider Khan, I. (2013). Potassium applied under drought improves physiological and nutrient uptake performances of wheat (Triticum Aestivum L.). Journal of Soil Science and Plant Nutrition. 13: 175-185.
  103. Sangakkara, U.R., Frehner, M. and Nosberger, J. (2001). Influence of soil moisture and fertilizer potassium on the vegetative growth of mungbean (Vigna radiate L. Wilczek) and cowpea (Vigna unguiculata L. Walp). Journal of Agronomy and Crop Science. 186: 73-81.
  104. Sangakkara, U.R., Hartwig, U.A. and Nosberger, J. (1996). Soil moisture and potassium affect the performance of symbiotic nitrogen fixation in faba bean and common bean. Plant and Soil. 184: 123-130.
  105. Sarkar, R.K. and Malik, G.C. (2001). Effect of foliar spray of potassium nitrate and calcium nitrate on grasspea (Lathyrus sativus L.) grown in rice fallows. Lathyrus Lathyrism Newsletter. 2: 47-48.
  106. Sarma, P.S. and Ramana, S. (1993). Response of sorghum to nitrogen and potassium in alfisol. Journal of Potassium Research. 9: 171-175.
  107. Sattar, A., Sher, A., Ijaz, M., Kashif, M., Suleman, M., Ali, M.U., Abbas, A. and Mahboob, A. (2017). Exogenous application of potassium improves the drought tolerance in chickpea. Journal of Arable Crops and Marketing. 01: 01-04.
  108. Shafiq, S., Akram, N.A. and Ashraf, M. (2015). Does exogenously-applied trehalose alter oxidative defense system in the edible part of radish (Raphanus sativus L) under water-    deficit conditions? Scientia Horticulturae. 185: 68-75.
  109. Shawquat, A.K., Mamun, A.A., Mahmud, A.A., Bazzaz, M., Hossain, A., Alam, S. and Karim, A. (2014). Effects of salt and water stress on leaf production, sodium and potassium ion accumulation in soybean. Journal of Plant Sciences. 2: 209-214.
  110. Siddiqui M.H., Al-khaishany M.Y. and Al-qutami M.A. (2015). Response of different genotypes of faba bean plant to drought stress. International Journal of Molecular Science. 16: 10214-10227.
  111. Siddiqui, M.H., Al-Whaibi, M.H., Sakran, A.M., Basalah, M.O. and Ali, H.M. (2012). Effect of calcium and potassium on antioxidant system of Vicia faba L under cadmium stress. International Journal of Molecular Science. 13: 6604-6619.
  112. Singh, J., Nakamura, S., and Ota, Y. (1993). Effect of epi-brassinolide on gram (Cicer arietinum) plants grown under water stress in juvenile stage. Indian Journal of Agricultural Science. 63: 395-397.
  113. Singh, N. and Kataria, N. (2012). Role of potassium fertilizer on nitrogen fixation in Chickpea (Cicer arietinum L.) under quantified water stress. Journal of Agricultural Technology. 8: 377-392.
  114. Singh, N., Chhokar, V., Sharma, K.D. and Kuhad, M.S. (1997). Effect of potassium on water relations, CO2 exchange and plant growth under quantified water stress in chickpea. Indian Journal of Plant Physiology. 2: 202-206.
  115. Singh, V. and Tomar, J.S. (1991). Effect of K and FYM levels on yield and uptake of nutrient by wheat. Journal of Potassium Research. 7: 309-313.
  116. Streeter, J.G. (2003). Effects of drought on nitrogen fixation in soybean root nodules. Plant Cell and Environment. 26: 1199-1204.
  117. Swaraj, K., Nandwal, A.S., Babber, S., Ahlawat, S. and Nainawati, H.S. (1995). Effect of water stress on functioning and structure of Cicer arietinum L. nodules. Biologia Plantarum. 37: 613-619.
  118. Tanaka, Y., Sano, T., Tamaoki, M., Nakajima, N., Kondo, N. and Hasezawa, S. (2005). Ethylene inhibits abscisic acid-induced stomatal closure in Arabidopsis. Plant Physiology. 138: 2337-2343.
  119. Tanaka, Y., Sano, T., Tamaoki, M., Nakajima, N., Kondo, N. and Hasezawa, S. (2006). Cytokinin and auxin inhibit abscisic acid-induced stomatal closure by enhancing ethylene production in Arabidopsis. Journal of Experimental Botany. 57: 2259-2266.
  120. Tawfik, K.M. (2008). Effect of water stress in addition to potassiomag application on mungbean. Australian Journal of Basic and Applied Science. 2: 42-52.
  121. Thalooth, A.T., Tawfik, M.M., and Mohamed, H.M. (2006). A comparative study on effect of foliar application zinc, potassium, magnesium on growth, yield and some chemical constituents of mung bean plants grown under water stress. World Journal of Agricultural Science. 2: 37-46.
  122. Thomas, R.J. and Hungria, M. (1988). Effect of potassium on nitrogen fixation, nitrogen transport, and nitrogen harvest index of bean. Journal of Plant Nutrition. 1: 175-188.
  123. Tint, A.M.M., Sarobol, E., Nakasathein, S. and Chai-aree, W. (2011). Differential responses of selected soybean cultivars to drought stress and their drought tolerant attributions. Kasetsart Journal.45: 571-582. 
  124. Walker, C.R., Black, J.A. and Miller, J. (1998). The role of cytosolic potassium and pH in the growth of barley roots. Plant Physiology. 118: 957-964.
  125. Wang, W., Wang, C., Pan, D., Zhang, Y., Luo, B., and Ji, J. (2018). Effects of drought stress on photosynthesis and chlorophyll fluorescence images of soybean (Glycine max L.) seedlings. International Journal of Agricultural and Biological Engineering. 11: 196-201.
  126. Yadav, B.S., Jadav, N.J. and Golakia, B.A. (1991). Response of maize (Zea mays) to lime and potassium application in calcareous soil II. Nutrient availability in soil and plant uptake. Journal of Potassium Research. 7: 293-298.
  127. Yadav, G., Gangarani, A., Das, A., Kandpal, B., Babu, S., Das, R. and Nath, M. (2019). Foliar application of urea and potassium chloride minimizes terminal moisture stress in lentil (Lens culinaris L.) crop. Legume Research. 10: 1-7.
  128. Zadehbagheri, M., Mohammad, M., Kamelmanesh, Shoorangiz, J. and Shahram, S. (2012). Effect of drought stress on yield and yield components, relative leaf water content, proline and potassium ion accumulation in different white bean (Phaseolus vulgaris L.) genotype. African Journal of Agricultural Research, 7, 5661-5670.
  129. Zagdanska, B. (1995). Respiratory energy demand for protein turnover and ion transport in wheat leaves upon water demand. Physiologia Plantarum. 95: 428-436.
  130. Zareian, A., Abad, H., Hamidi, A., Mohammadi, G. and Tabatabaei, S. (2013). Effect of drought stress and potassium foliar application on some physiological indices of three wheat (Triticum aestivum L.) cultivars. Annals of Biological Research. 4: 71-74.
  131. Zhang, L.X., Gao, M., Shengxiu, L.I., Alva, K.A. and Ashraf, M. (2014). Potassium fertilization mitigates the adverse effects of drought on selected Zea mays cultivars. Turkish Journal of Botany. 38: 713-723.
  132. Zhang, Y.J., Xie, Z.K., Wang, P.X., Su, L.P. and Goa, H. (2011). Effect of water stress on leaf photosynthesis, chlorophyll Content and growth of Oriental Lily. Russian Journal of Plant Physiology. 58: 844-850.
  133. Zorb, C., Senbayram, M., and Peiter, E. (2014). Potassium in agriculture status and perspectives. Journal of Plant Physiology. 171: 656-669.

Editorial Board

View all (0)