- Arnon, D.I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24: 1-15.
- Bates, L.S., Waldren, R. P. and Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39: 205.
- Bayoumi, T. Y., Eid manal, H., and Metwali, E. M. (2008). Application of physiological and biochemical indices as a screening technique for drought tolerance in wheat genotypes. African Journal of Biotechnology, 14: 2341-2352.
- Bhattarai, T. and Sebastian, F. (2005). Isolation and characterization of a dehydrin gene from Cicer pinnatifidum, a drought-resistant wild relative of chickpea. Physiologia Plantarum, 123: 452-458.
- Cheeseman, J.M. (1988). Mechanisms of salinity tolerance in plants. Journal of Plant Physiology, 87: 547-550.
- Chen, J., Ghanem, M. E., and Siddique, K. H. M. (2016). Characterising root trait variability in chickpea (Cicer arietinum L.) germplasm. Journal of Experimental Botany, 68: 1987-1999.
- Flowers, T. J., Gaur, P.M., Gowda, C.L.L., Krishnamurthy, L., Srinivasan, S., Siddique, K.H.M., et al. (2010). Salt sensitivity in chickpea. Plant Cell and Environment.33:490-509.
- Gill, S. S. and Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48: 909-930.
- Gilroy, S., Suzuki, N., Miller, G., Choi, Won-Gyu., Toyota, M., Devireddy, Amith R, and Mittler, R. (2014). A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. Trends in Plant Science, 19: 623-630.
- Greenway, H. and Munns, R. (1980). Mechanism of salt tolerance in non halophytes. Annual Review of Plant Physiology, 31: 149-190.
- Kato, M. and Shimizu, S. (1985). Chlorophyll metabolism in higher plants. VI. Involvement of peroxidase in chlorophyll degeneration. Plant Cell Physiology, 26(7): 1291-301.
- Krishnamurthy, L., Turner, N.C., Gaur, P.M., Upadhyaya, H.D., Varshney, R.K., Siddique, K.H.M., and Vadez, V. (2011). Consistent variation across soil types in salinity resistance of a diverse range of chickpea (Cicer arietinum L.) genotypes. Journal of Agronomy and Crop Science,197:214-27.
- Kumar, Ashwani., Kumar, Arvind., Lata, Charu. and Kumar, Saurabh. (2016). Eco-physiological responses of Aeluropus lagopoides (grass halophyte) and Suaeda nudiflora (non-grass halophyte) under individual and interactive sodic and salt stress. South African Journal of Botany, 105: 36-44.
- Kumar, A., Lata, C., Krishnamurthy, S.L., Kumar, Arvind., Prasad, K.R.K. and Kulshreshtha, Neeraj. (2017). Physiological and biochemical characterization of rice varieties under salt and drought stresses. Journal of Soil Salinity and Water Quality, 9(2): 167-177.
- Kumari, V., Germida J. and Vujanovic V. (2018). Legume endosymbionts: Drought stress tolerance in second generation chickpea (Cicer arietinum) seeds. Journal of Agronomy and Crop Science,1-12. DOI: 10.1111/jac.12283
- Lata, C., Kumar, A., Sharma, S.K., Singh, J., Sheokand, S., Pooja, Mann, A. and Rani B. (2017). Tolerance to combined boron and salt stress in wheat varieties: Biochemical and molecular characterization. Indian Journal of Experimental Biology, 55: 321-328.
- Maggio, A., Miyazaki, S. and Veronese, P. (2002). Does proline accumulation play an active role in stress-induced growth reduction? Plant Journal, 31: 699-712.
- Mann, A., Bishi S. K., Mahatma, M. K. and Kumar, A. (2015). In: Managing Salt Tolerance in Plants. Molecular and Genomic Perspectives. (Wani S. H. and Hossain M.A. Eds.). Metabolomics and Salt Stress Tolerance in Plants. CRC Press Taylor and Francis Group. P: 252-262,
- Melonid, D. A., Oliva, M. A., Ruiz, H. A. and Martinez, C. A. (2001). Contribution of proline and inorganic solutes to osmotic adjustment in cotton under salt stress. Journal of Plant Nutrition, 24(3): 599-612.
- Munns, R. and Termatt A. (1986). Whole-plant responses to salinity. Australian Journal of Plant Physiology, 13: 143-160.
- Munns, R. and Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59: 651-681.
- Munns, R. (2002). Comparative physiology of salt and water stress. Plant Cell and Environment, 25(2): 239-52.
- Prado, F. E., Boero, C., Gallardo, M. and Gonzalez, J. A. (2000). Effect of NaCl on germination, growth, and soluble sugar content in Chenopodium quinoa Willd. seeds. Botanical Bulletin-Academia Sinica Taipei 41(1): 27-34.
- Pushpavalli, R., Quealy, J., Colme,r T. D., Turner, N. C., Siddique, K. H. M., Rao, M. V. and Vadez, V. (2016). Salt stress delayed flowering and reduced reproductive success of chickpea (Cicer arietinum L.), a response associated with Na+ accumulation in leaves. Journal of Agronomy and Crop Science, 202 (2). 125-138.
- Qadir, M., Quillerou, E., Nangia, V., et al. (2014). Economics of salt-induced land degradation and restoration. Natural Research Forum, 38: 282-295.
- Pushpavalli, R., Krishnamurthy, L., Thudi, M., Gaur, Pooran M., Rao, Mandali V., Siddique, K. et al (2015). Two key genomic regions harbour QTLs for salinity tolerance in ICCV 2 × JG 11 derived chickpea (Cicer arietinum L.) recombinant inbred lines. BMC Plant Biology 15:124
- Ramamoorthy, P., Lakshmanan, K., Upadhyaya, H. D., Vadez, V., and Varshneya, R. K. (2017). Root traits confer grain yield advantages under terminal drought in chickpea (Cicer arietinum L.). Field Crops Research, 201: 146-161.
- Roy, S. J., Negr~ao, S. and Tester, M. (2014). Salt resistant crop plants. Current Opinion in Biotechnology, 26: 115-124.
- Sanwal, S. K., Kumar, A., Mann, A. and Kaur, G. (2018). Differential response of pea (Pisum sativum) genotypes exposed to salinity in relation to physiological and biochemical attributes. Indian Journal of Agricultural Sciences,, 88 (1): 149-56.
- Samineni, S., Siddique, K.H.M., Gaur, P.M. and Colmer, T. D. (2011). Salt sensitivity of the vegetative and reproductive stages in chickpea (Cicer arietinum L.): Podding is a particularly sensitive stage. Environmental and Experimental Botany, 71:260-8.
- Azimi, S., Amirnia, R., Tajbakhsh, M. and Ghiyasi, M. (2012). Effects of salt stress on growth and nutrients concentration in chickpea (Cicer arietinum L.). Advances in Environmental Biology, 6(2): 907-911.
- Singla, R. and Garg, N. (2005). Influence of salinity on growth and yield attributes in chickpea cultivars. Journal of Agriculture, 29: 231-235.
- Turner, N. C., Colmer, T. D., Quealy, J., Pushpavalli, R., Krishnamurthy, L., Kaur, J., Singh, G., et al (2013). Salinity tolerance and ion accumulation in chickpea (Cicer arietinum L.) subjected to salt stress. Plant and Soil, 365: 347-361.
- Vadez, V., Krishnamurthy, L., Serraj, R., Gaur, P.M., Upadhyaya, H. D., Hoisington, D.A., et al (2007). Large variation in salinity tolerance in chickpea is explained by differences in sensitivity at the reproductive stage. Field Crops Research, 104: 123-129.
- Wang, W., Vinocur, B. and Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218(1):1-14.
- Zheng, Y., Wang, Z., Sun, X., Jia, A., Jiang, G. and Li, Z. (2008). Higher salinity tolerance cultivars of winter wheat relieved senescence at reproductive stage. Environmental and Experimental Botany, 62: 129-38.
Submitted Date : 10-07-2018
Accepted Date : 4-10-2018
First Online: