Legume Research

  • Chief EditorJ. S. Sandhu

  • Print ISSN 0250-5371

  • Online ISSN 0976-0571

  • NAAS Rating 6.80

  • SJR 0.391

  • Impact Factor 0.8 (2023)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Legume Research, volume 42 issue 2 (april 2019) : 250-259

Seed storability of summer-planting soybeans under natural and artificial aging conditions 

Xi Zhang, Mengge Xu, Aiman Hina, Jiejie Kong, Junyi Gai, Xiaohong He, Tuanjie Zhao
1Key Laboratory for Biology and Genetic Improvement of Soybean (General), Ministry of Agriculture, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing-210 095, China.
  • Submitted07-01-2018|

  • Accepted03-08-2018|

  • First Online 07-12-2018|

  • doi 10.18805/LR-404

Cite article:- Zhang Xi, Xu Mengge, Hina Aiman, Kong Jiejie, Gai Junyi, He Xiaohong, Zhao Tuanjie (2018). Seed storability of summer-planting soybeans under natural and artificial aging conditions. Legume Research. 42(2): 250-259. doi: 10.18805/LR-404.
Total 246 lines from southern China were subjected to treatments under natural conditions for 4 years and artificial aging under high temperature (45°C) and high humidity (95% RH) for 5 days. Seed vigor measured by the germination rate (GR), normal seedling rate (NSR), full seedling length (FSL), seedling shoot length (SSL) and seedling root length (SRL). The significant decrease was observed in the five traits with high heritability and variation. Correlation coefficients among the five traits were highly significant (r>0.700), and significant correlation of these indicators between two treatments was also found with the highest r values of 0.405 for GR. Only seed protein content had weak significant positive correlation with FSL and SSL. According to the grading standard, there were five categories: high tolerance, tolerance, middle tolerance, sensitivity and high sensitivity. 12 lines with good tolerance level were identified, and will be utilized in future breeding programs to improve seed longevity in soybean.
  1. Abdalla, F. H. and Roberts E.H. (1969). The effect of seed storage conditions on the growth and yield of barley, broad beans, and peas. Annals of Botany, 33(1), 169-184.
  2. Baleševic-Tubic, S., Tatic, M., Dorðevic, V., Nikolic, Z., Subic, J. and Dukic V. (2011). Changes in soybean seeds as affected by accelerated and natural aging. Romanian Biotechnology Letters, 16(6), 6740-6747.
  3. Cheng, C. M., Yang, C. Y., Ma, Q. B. and Nian H. (2011). Genetic diversity analysis of wild soybean in Jiangxi. Journal of Plant Genetic Resources, 12(6), 928-933.
  4. Cisse, N. and Ejeta G. (2003). Genetic variation and relationships among seedling vigor traits in sorghum. Crop Science, 43(3), 824-    828.
  5. Dargahi, H., Tanya, P. and Srinives P. (2014). Mapping of the genomic regions controlling seed storability in soybean (Glycine max L.). Journal of Genetics, 93(2), 365-370.
  6. Delouche, J. C. and Baskin C. C. (1973). Accelerated aging techniques for predicting the relative storability of seed lots. Seed Science Technology, 1, 427-452.
  7. Gao, H. W., Man, Q., Wu, M., Lei, Y. Q., Zhang, J., Zhang, W. H. and Liu L. K. (2014). Screening of soybean germplasm with good seed longevity. Soybean Science, 33(1), 6-12.
  8. Hou, H. J. and Chang K. C. (2004). Storage conditions affect soybean color, chemical composition and tofu qualities. Journal of Food Processing and Preservation, 28(6), 473-488.
  9. Hridya, V. R., Lakshmi, S. and Ambika S. (2017). Dry dressing of soybean [Glycine max (L.) Merrill] cv. CO 3 seeds with near nano size botanicals to improve physiological performance during storage. Legume Research, 40(6): 1107-1112.
  10. Hu, G. Y., Zhang, L., Huang, Z. P., Li, J. K., Zhang, L. Y., Wang, D. G. and Hu C. (2012). Identification method of resistance to seed aging in soybean (Glycine max L. Merr.). Soybean Science, 31(3), 389-394.
  11. Kueneman E. A. (1983). Genetic control of seed longevity in soybeans. Crop Science, 23(1), 5-8.
  12. Liu, J., Qin, W. T., Wu, H. J., Yang, C. Q., Deng, J. C., Iqbal, N., Liu, W. G., Du, J. B., Shu, K., et al. (2017). Metabolism variation and better storability of dark-versus light-coloured soybean (Glycine max L. Merr.) seeds. Food Chemistry, 223, 104-113.
  13. Mali, M. S., Shelar, V. R. and Nagawade D. R. (2014). Effect of accelerated ageing on seed storage potential of soybean [Glycine max (L.) Merill]. Journal of Food Legumes, 27(3), 192-196.
  14. Mbofung, G. C. Y., Goggi, A. S., Leandroand, L. F. S. and Mullen R. E. (2013). Effects of storage temperature and relative humidity on viability and vigor of treated soybean seeds. Crop Science, 53(3), 1086-1095. 
  15. Mullin, W. J. and Xu W. (2001). Study of soybean seed coat components and their relationship to water absorption. Journal of Agriculture & Food Chemistry, 49(11), 5331-5335.
  16. Murthy, U. N., Kumar, P. P. and Sun W. Q. (2003). Mechanisms of seed ageing under different storage conditions for Vigna radiata (L.) Wilczek: lipid peroxidation, sugar hydrolysis, Maillard reactions and their relationship to glass state transition. Journal of Experimental Botany, 54(384), 1057-1067.
  17. Nagel, M. and Börner A. (2010). The longevity of crop seeds stored under ambient conditions. Seed Science Research, 20(1), 1-12.
  18. Nagel, M., Rosenhauer, M., Willner, E., Snowdon, R. J., Friedt, W. and Börner A. (2011). Seed longevity in oilseed rape (Brassica napus L.)-genetic variation and QTL mapping. Plant Genetic Resources, 9(2), 260-263.
  19. Phang, T. H., Shao, G. and Lam H. M. (2008). Salt tolerance in soybean. Journal of Integrative Plant Biology, 50(10), 1196-1212. 
  20. SAS, I. I. (2004). SAS/STAT® 9.2 user’s guide. Cary, NC: SAS Institute Inc.
  21. Sayama, T., Nakazaki, T., Ishikawa, G., Yagasaki, K., Yamada, N., Hirota, N., Hirata, K., et al. (2009). QTL analysis of seed-flooding tolerance in soybean (Glycine max [L.] Merr.). Plant Science, 176(4), 514-521. 
  22. Shelar, V. R., Shaikh, R. S. and Nikam A. S. (2008). Soybean seed quality during storage: a review. Agricultural Reviews, 29(2), 125-131.
  23. Singh, R. K. and Ram H. H. (1986). Inheritance study of soybean seed storability using an accelerated ageing test. Field Crop Research, 13(1), 89-98.
  24. Tatic, M., Baleševic-Tubic, S., Ðorðevic, V., Mikliè, V., Vujakovic, M. and Ðukic V. (2012). Vigor of sunflower and soybean aging seed. Helia, 35(56), 119-126.
  25. TeKrony D. M. (2005). Accelerated aging test: principles and procedures. Seed Technology, 27(1), 135-146.
  26. Tomes, L. J., TeKrony, D. M. and Egli D. B. (1988). Factors influencing the tray accelerated aging test for soybean seed. Journal of Seed Technology, 12(1), 24-36.
  27. Tyler J. M. (1997). Effect of impermeable seed coat on germination of seed from early maturing soybean. Seed Technology, 19(1), 45-50.
  28. Usha, T. N. and Dadlani M. (2015). Evaluation of seed vigour in soybean (Glycine max). Legume Research, 38(3), 308-312.
  29. Vijayakumar, H. P. and Vijayakumar A. (2015). Standardization of accelerated ageing duration to evaluate seed storability of soybean cultivars. International Journal of Agricultural Science Research, 5(4), 93-98.
  30. Wang, F., Wang, L. Q., Tian, X., Gu, W. H. and Ma H. (2007). Pre-harvest and post-harvest seed deterioration resistance of spring soybean germplasm in south China. Scientia Agricultura Sinica, 40(11), 2637-2647.
  31. Wang, Z. L., Guo, C. Y., Zhang, J. S., Sun, F. L., Li, Z. Y., He X. H., Kong, J. J., Gai, J. Y. and Zhao T. J. (2015). Identification and genetic relationship of elite soybean breeding lines with high seed protein content in Yangtze - Huai River Valleys. Chinese Journal of Oil Crop Science, 37(6), 780-788.
  32. Wien, H. C. and Kueneman E. A. (1981). Soybean seed deterioration in the tropics. II. Varietal differences and techniques for screening. Field Crops Research, 4, 123-132.
  33. Zhang, Z. H.,Yu, S. B., Yu, T., Huang, Z. and Zhu Y. G. (2005). Mapping quantitative trait loci (QTLs) for seedling-vigor using recombinant inbred lines of rice (Oryza sativa L.). Field Crops Research, 91(2–3), 161-170. 

Editorial Board

View all (0)