Identification and characterization of microsatellite markers in fenugreek: An inter-family amplification

DOI: 10.18805/LR-4024    | Article Id: LR-4024 | Page : 611-616
Citation :- Identification and characterization of microsatellite markers in fenugreek: An inter-family amplification.Legume Research-An International Journal.2020.(43):611-616
Geetika Jethra, Sharda Choudhary and Vinay Sharma gjethra08@gmail.com
Address : Department of Biotechnology and Bioinformatics Centre, Banasthali Vidyapith, P.O. Banasthali Vidyapith-304 022, Rajasthan, India.
Submitted Date : 6-04-2018
Accepted Date : 9-06-2018

Abstract

Fenugreek (Trigonella foenum-graecum) is one of the most important and primitive medicinal plants belonging to family fabaceae and is recognized as one of the most prominent seed spices. Development, identification and classification of entirely new set of SSRs are a very expensive and time consuming process for a crop like fenugreek. Instead, a novel set of SSRs can be achieved with ease in less expense by transferring the microsatellite loci of the related species in fenugreek. SSR’s of two major crops, carrot and celery belonging to apiaceae family are available in public domain for cross-species and inter-family investigation. In the present study, we examined transferability of 100 carrot SSR loci in fenugreek of which 19% of SSR’s amplified, where 5 primers were monomorphic. 14 SSRs were polymorphic in nature and the bands ranged between 2 to 5. GSSR-87, GSSR-92, GSSR-136 and BSSR-8 showed monomorphic bands and were specific for fenugreek genotypes and can be regarded as a dominant tool for fenugreek breeding and genetic studies. However, GSSR-81 and GSSR-96 were most polymorphic in nature and can be utilized further to distinguish fenugreek from other seed spices. The analysis, revealed optimum level of cross-species transferability (>35.2%) in fenugreek, where no SSR resource is available till date, initiating cross transferability testing from the enriched SSR database of carrot.

Keywords

Apiaceae Fenugreek Microsatellite Monomorphic Polymorphic Transferability.

References

  1. Al-Asadi, J.N. (2014). Therapeutic Uses of Fenugreek (Trigonella foenum-graecum L.). Am. J. Soc. Iss. Hum.
  2. Al-Maamari, I.T., Al-Sadi, A.M. and Al-Saady, N.A. (2014). Assessment of genetic diversity in fenugreek (Trigonella foenum graecum L.) in Oman. Int. J. Agric. Biol.,16: 813 818.
  3. Barbara, T., Palma-Silva, C., Paggi, G.M., Bered, F., Fay, M.F. and Lexer, C. (2007). Cross-species transfer of nuclear microsatellite markers: Potential and limitations. Mol. Ecol.16: 3759-3767.
  4. Bushar, L.M., Maliga, M. and Reinert, H.K. (2001). Cross-species amplification of Crotalus horridus microsatellites and their application in phylogenetic analysis. J. Herpetol. 35: 532-537.
  5. Cavagnaro, P.F., Chung, S-M., Manin, S., Yildiz, M., Ali, A., Alessandro, M.S., Iorizzo, M., Senalik, D.A. and Simon, P.W. (2011). Microsatellite isolation and marker development in carrot - genomic distribution, linkage mapping, genetic diversity analysis and marker transferability across Apiaceae. BMC Geno. 12: 386. DOI: 10.1186/1471-2164-12-386.
  6. Choudhary, S., Singh, R., Meena, R.S. and Jethra, G. (2016). Secondary and tertiary structure prediction of fenugreek (Trigonella foenum-graecum) protein. Legume Res.-An Inter. J. 39: 48-51. DOI: 10.18805/lr.v39i1.8863
  7. Choudhary S, Jethra G, Sharma RS and Verma AK (2017) Microsatellite in coriander: A cross species amplification within Apiaceae Family. Int. J. Curr. Microbiol. App. Sci 6(5): 2714-2721
  8. Dangi, R.S., Lagu, M.D., Choudhary, L.B., Ranjekar, P.K. and Gupta, V.S. (2004). Assessment of genetic diversity in Trigonella foenum-graecum and Trigonella caerulea using ISSR and RAPD markers. BMC Plant Biol.4: 13.
  9. Dhaker, R.C., Dubey, R.K., Tiwari, R.C. and Dubey, S.K. (2017). Water use, yield and economics of fenugreek (Trigonella foenum-    graecum L.) under varying IW-CPE ratios and fertilizer levels in South West Rajasthan. Legume Res.-An Inter. J. 40(4): 726-730.
  10. Doyle, J.J. and Doyle, J.L. (1990). Isolation of plant DNA from fresh tissue. Focus. 12: 13-15.
  11. Fribourg, H.A., Hannaway, D.B. and West, C.P. (2009). Accomplishments and Challenges,” Chapter 29; pp. 511-515. 2009. In: Tall Fescue for the Twenty-first Century. [Fribourg H.A., Hannaway D.B., and “West C.P. (ed.)]. Agronomy Monographs 53. ASA, CSSA, SSSA, Madison, WI.
  12. Gurjar, M., Naruka, I.S. and Shaktawat, R.P.S. (2016). Variability and correlation analysis in fenugreek (Trigonella foenum-graecum L.). Legume Res.-An Inter. J. 39(3): 459-465.
  13. Jayashree, B., Punna, R., Prasad, P., Bantte, K., Hash, C.T., Chandra, S., Hoisington, D.A. and Varshney, R.K. (2006). A database of simple sequence repeats from cereal and legume expressed sequence tags mined in-silico: survey and evaluation. In silico Bio. 6: 607-620.
  14. Kakani, K.R., Singh, S.K., Pancholay, A., Meena, S.R. and A. Raturi. (2011). Assessment of genetic diversity in Trigonella foenum graecum based on nuclear ribosomal DNA, internal transcribed spacer and RAPD analysis. Plant Mol. Biol. Rep. 29: 315 323
  15. Kumar, V., Srivastava, N., Singh, A., Vyas, M.K., Gupta, S., Katudia, K., Vaidya, K., et al (2012). Genetic diversity and identification of variety specific AFLP markers in fenugreek (Trigonella foenum graecum). Afr. J. Biotechnol., 11: 4323 4329.
  16. Meghwal, M. and Goswami, T.K. (2012). A Review on the functional properties, nutritional content, medicinal utilization and potential application of fenugreek. J. Food Process Technol. 3(9): 1-10. DOI: 10.4172/2157-7110.1000181.
  17. Mehta, R.S., Anwer, M.M. and Kakani, R.K. (2012). Yield and profitability of fenugreek (Trigonella foenum-graecum L.) as influenced by irrigation and nutrient levels with varying crop geometry. Legume Res.-An Inter. J. 35(1): 28 – 31
  18. Navajas, M. and Fenton, B. (2000). The application of molecular markers in the study of diversity in acarology: a review. Exp. Appl. Acarol. 24: 751-74.
  19. Peakall, R., Gilmore, S., Keys, W., Morgante, M. and Rafalski, A. (1998). Cross Species amplification of soyebean (Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera: Implication for the transferability of SSRs in plants. Mol. Biol. E. 15: 1275-1287.
  20. Pemba, H.B. and Sharangi A.B (2018). Influence of dates of sowing and irrigation scheduling on phenology, growth and yield dynamics of fenugreek (Trigonella foenum greacum L.). Legume Res.-An Inter. J. 41(2): 275-280.
  21. Thomas, J.E., Bandara, M., Lee, E.L., Driedger, D. and Acharya, S. (2011). Biochemical monitoring in fenugreek to develop functional food and medicinal plant variants. N. Biotechnol.28: 110-117.
  22. Upaganlawar, A.B., Badole, S.L., Bodhankar, S.L. (2013) Chapter 6 – Antidiabetic Potential of Trigonelline and 4-Hydroxyisoleucine in Fenugreek. Bioactive Food as Dietary Interventions for Diabetes. 59-64. https://doi.org/10.1016/B978-0-12-397153-    1.00006-8
  23. Wang, X.B., Mulock, B., Guus, B. and McCallum, B.T. (2010) Development of EST-derived simple sequence repeat markers for wheat leaf rust fungus, Puccinia triticina Eriks. Can. J. Plant Pathol. 32: 98–107. 
  24. Weising, K., Nybom, H., Wolff, K. and Kahl, G. (2006). DNA fingerprinting in plants: principles, methods and applications. Annals of Bot. 97: 476-477. 

Global Footprints