Improvement in salt tolerance of Vigna mungo (L.) Hepper by exogenously applied 24-epibrassinolide

DOI: 10.18805/LR-4019    | Article Id: LR-4019 | Page : 647-652
Citation :- Improvement in salt tolerance of Vigna mungo(L.) Hepper by exogenously applied 24-epibrassinolide.Legume Research-An International Journal.2020.(43):647-652
Sombir Singh, Somveer Jakhar and Suhana Rao sombiryadav91@gmail.com
Address : Plant Physiology and Biochemistry Laboratory, Department of Botany, Kurukshetra University, Kurukshetra-136 119, Haryana, India.
Submitted Date : 16-03-2018
Accepted Date : 5-11-2018

Abstract

This study was designed to explore the ameliorative effect of exogenously applied 24-epibrassinolide (24-EBL) against salt stress in Vigna mungo (L.) Hepper. The plants were treated with four different levels of salinity (0, 8, 12 and 16 dSm-1) followed by the foliar spray of 24-EBL (0, 10-5, 10-7 and 10-9 M). The results showed that 24-EBL could alleviate the adverse effects of salinity by improving the growth parameters of 35 days old plants. The same also stimulated the leaf enzymatic antioxidant activity in salt-treated plants. The findings of the present study revealed that application of 24-EBL ameliorated the salt stress in black gram plants.

Keywords

Antioxidant enzymes 24-epibrassinolide Growth traits Salt stress Vigna mungo

References

  1. Aebi, H. (1983). Catalase In: Methods of enzymatic analysis (Ed. H.U. Bergmeyer). Verlag Chemie. 2: 673-684.
  2. Agarwal, S. and Shaheen, R. (2007). Stimulation of antioxidant system and lipid peroxidation by abiotic stresses in leaves of Momordica charantia. Brazilian Journal of Plant Physiology. 19: 149-161.
  3. Anuradha, S. and Rao, S.S.R. (2001). Effect of brassinosteroids on salinity stress induced inhibition of germination and seedling growth of rice (Oryza sativa L.). Plant Growth Regulation. 33: 151-153.
  4. Bajguz, A. (2000). Blockage of heavy metal accumulation in Chlorella vulgaris cells by 24- Epibrassinolide. Plant Physiology and Biochemistry. 38(10): 797-801. 
  5. Behnamnia, M., Kalantari, K.M., Rezanejad, F. (2009). Exogenous application of brassinosteroid alleviates drought-induced oxidative stress in tomato (Lycopersicon esculentum L.). General and Applied Plant Physiology. 35: 22-34.
  6. Carlberg, I. and Mannervik, B. (1975). Purification and characterization of the flavoenzyme glutathione reductase from rat liver. Journal of Biological Chemistry, 250: 5475-5480.
  7. Chance, B. and Maehly, A.C. (1956). Assay of catalase and peroxidase. Methods in Enzymology. 2: 764-775.
  8. Clouse, S.D. and Sasse, J.M. (1998). Brassinosteroids: essential regulators of plant growth and development. Annual Review of Plant Physiology and Plant Molecular Biology. 49: 427-451.
  9. Dalton, D.A., Russell, S.A., Hanus, F.J., Pascoe, G.A., Evans, H.J. (1986). Enzymatic reactions of ascorbate and glutathione that prevent peroxicle damage in soybean root nodules. Proceedings of the National Academy of Sciences, USA. 83: 3811-3815.
  10. Dhaubhadel, S., Chaudhary, S., Dobinson, K.F., Krishna, P. (1999). Treatment with 24-epibrassinolide (a brassinosteroid) increases the basic thermotolerance of Brassica napus and tomato seedlings. Plant Molecular Biology. 40: 333-342.
  11. Giannopolitis, C.N. and Ries, S.K. (1977). Superoxide dismutase I: occurrence in higher plants. Plant Physiology. 59: 309-314.
  12. Hasanuzzaman, M., Nahar, K., Fujita, M. (2013). ”Plant response to salt stress and role of exogenous protectants to mitigate salt-    induced damages,” In: Ecophysiology and Responses of Plants Under Salt Stress, [eds. Ahmed, P., Azooz, M.M., Prasad, M.N.V.], NY: Springer New York, 25-87. 
  13. Hossain, M.A., Nakano, Y., Asada, K. (1984). Monodehydroascorbate reductas in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. Plant and Cell Physiology. 25(3): 385-395.
  14. Janeczko, A., Koscielniak, J., Pilipowicz, M., Szarek-Lukaszewsa, G., Skoczowspi, A. (2005). Protection of winter rape photosystem 2 by 24-epibrassinolide under cadmium stress. Photosynthetica. 43: 293-298.
  15. Khodary, S.E.A. (2004). Effect of SA on the growth, photosynthesis and carbohydrate metabolism in alt-stressed maize plants. International Journal of Agriculture and Biology. 6: 5-8. 
  16. Li, L. and Van Staden, J. (1998). Effects of plant growth regulators on the antioxidant system in callus of two maize cultivars subjected to water stress. Plant Growth Regulation. 24: 55-66.
  17. Liu, S.C., Lin, J.T., Wang, C.K., Chen, H.Y., Yang, D.J. (2009). Antioxidant properties of various solvent extracts from lychee (Litchi chinenesis Sonn.) flowers. Food Chemistry. 114: 577-581.
  18. Maas, E.V. (1986). Salt tolerance of plants. Applied Agricultural Research. 1: 12-26.
  19. Mathur, N., Singh, J., Bohra, S., Bohra, A., Vyas A. (2006). Biomass production, productivity and physiological changes in moth bean genotypes at different salinity levels. American Journal of Plant Physiology. 1(2): 210-213.
  20. Nazar, R., Iqbal, N., Syeed, S., Khan, N.A. (2011). Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. Journal of Plant Physiology. 168: 807-815.
  21. Nunez, M., Mazzafera, P., Mazorra, L.M., Siquera, W.J., Zullo, M.A.T. (2003). Influence of a brassinosteroid analogue on antioxidant enzymes in rice grown in culture medium with NaCl. Biologia Plantarum. 47: 67-70.
  22. Ozdemir, F., Bor, M., Demiral, T., Turkan, I. (2004). Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice (Oryza sativa L.) under salinity stress. Plant Growth Regulation. 42: 203-211.
  23. Parida, A.K. and Das, A.B. (2005). Salt tolerance and salinity effects on plants. Ecotoxicology and Environmental Safety. 60: 324-349.
  24. Rady, M.M. (2011). Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean (Phaseolus vulgaris L.) plants under salinity and cadmium stress. Scientia Horticulturae. 129: 232-237.
  25. Sasse, J.M., Smith, R., Hudson, I. (1995). Effect of 24-epibrassinolide on germination of seeds of Eucalyptus camaldulensis in saline conditions. Plant Growth Regulation Society of America. 22: 136-141.
  26. Shahbaz, M. and Ashraf, M. (2007). Influence of exogenous application of Brassinosteroid on growth and mineral nutrients of wheat (Triticum aestivum L.) under saline conditions. Pakistan Journal of Botany. 39: 513-522.
  27. Talukdar, D. (2012). Modulation of plant growth and leaf biochemical parameters in grass pea (Lathyrus sativus L.) and fenugreek (Trigonella foenum-graecum L.) exposed to NaCl treatments. Indian Journal of Fundamental and Applied Life Sciences. 2: 20-28.
  28. Tester, M. and Langridge, P. (2010). Breeding technologies to increase crop production in a changing world. Science, 327: 818-822.
  29. Turan, S. and Tripathy, B.C. (2012). Salt and genotype impact on antioxidative enzymes and lipid peroxidation in two rice cultivars during de-etiolation. Protoplasma. 250: 209-222.
  30. Vardhini, B.R. and Rao, S.S.R. (2001). Effect of brassinosteroids on growth and yield of tomato (Lycopersicon esculentum Mill.) under field conditions. Indian Journal of Plant Physiology. 6: 326-328.
  31. Vital, S.A., Fowler, R.W., Virgen, A., Gossett, D.R., Banks, S.W., Rodriguez, J. (2008). Opposing roles for superoxide and nitric oxide in the NaCl stress induced up regulation of antioxidant enzyme activity in cotton callus tissue. Environmental and Experimental Botany. 62: 60-68.
  32. Yildirim, E., Turan, M., Donmez, M.F. (2008). Mitigation of salt stress in radish (Raphanus sativus L.) by plant growth promoting rhizobacteria. Romanian Biotechnological Letters. 13: 3933-3943.
  33. Yilmaz, H. and Kina, A. (2008). The influence of NaCl salinity on some vegetative and chemical changes of strawberries (Fragaria ananassa L.). African Journal of Biotechnology. 7(18): 3299-3305. 

Global Footprints