- Anzuay, M. S., Ludueña, L. M., Angelini, J. G., Fabra, A., Taurian T. (2015). Beneficial effects of native phosphate solubilizing bacteria on peanut (Arachis hypogaea L) growth and phosphorus acquisition. Symbiosis, 66: 89-97. DOI 10.1007/s13199-015-0337-z.
- Bashan, Y., Kamnev, A. A., de-Bashan, L. E. (2013) Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilizing bacteria that enhance plant growth: a proposal for an alternative procedure. Biology and Fertility of Soils, 49: 465-479.
- Dey, R., Pal, K. K., Bhatt, D. M., hauhan, S. M. (2004). Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiological Research, 159: 371-394.
- Fankem, H., Nwaga, D., Deubel, A., Dieng, L., Merbach, W., Etoa, F. X. (2006). Occurrence and functioning of phosphate solubilizing microorganisms from oil palm tree (Elaeis guineensis) rhizosphere in Cameroon. African Journal of Biotechnology, 5: 2450-2460.
- Fearnside, P. M. (1998). Phosphorous and human carrying capacity in Brazilian Amazonia. In: Lynch J. P., Deikman J. (eds.) Phosphorous in plant biology: regulatory roles in molecular, cellular, rganismic, and ecosystem processes. American Society Plant Physiology, Rockville, 94-108.
- Fernández, L. A., Zalba, P., Gómez, M. A., Sagardoy, M. A. (2007). Phosphate-solubilization activity of bacterial strains in soil and their effect on soybean growth under greenhouse conditions. Biology and Fertility of Soils, 43: 805-809.
- Goldstein, A. H. (2000). Bioprocessing of rock phosphate ore: essential technical considerations for the development of a successful commercial technology. Proceedings of the 4th International Fertilizer Association Technical Conference. IFA, Paris.
- Goldstein, A. H., Rogers, R. D., Mead, G. (1993). Separating phosphate from ores via bioprocessing. Bio/Technology, 11: 1250-1254.
- Gull, M., Hafeez, F. Y., Saleem, M., Malik, K. A. (2004). Phosphorus uptake and growth promotion of chickpea by co-inoculation of mineral phosphate solubilizing bacteria and a mixed rhizobial culture. Australian Journal of Experimental Agriculture, 44: 623-628.
- Hao, X., Cho, C. M., Racz, G. J., Chang, C. (2002). Chemical retardation of phosphate diffusion in an acid soil as affected by liming. Nutrient Cycling in Agroecosystems, 64: 213-224.
- Li, S. T., Zhou, J. I., Uang, H. Y., Chen, X. Q., Du, C. W. (2003). Characteristics of fixation and release of phosphorus in three soils. Acta Pedologzca Sznica, 40: 908-914.
- Matsumura, A., Daimon, H. (2018). An evaluation of phosphorus uptake in Sesbania cannabina when ferric phosphate is applied in the presence of phosphate-solubilizing rhizobia. Legume Research-An International Journal, 41(2): 311-315.
- Merbach, W., Deubel, A., Gransee, A., Ruppel, S., Klamroth, A. K. (2010). Phosphorus solubilization in the rhizosphere and its possible importance to determine phosphate plant availability in soil. A review with main emphasis on German results. Archives of Agronomy and Soil Science, 56(2): 119-138.
- Mohsin, M. A., Sarkar, A. K., Mathur, B. S. (1995). Acid Soil Management, Kalyani Publishers, New Delhi.
- Page, A. L., Miller, R. H., Keeny, D. R. (1982). Methods of Soil and Plant Analysis, Part-2,2nd Edn. No (9) Part in the series, American Society of Agronomy, Inc. Soil Science Society of American Journal. Madison, Wisconsin, USA.
- Panda, N. (2009). Particular issues in plant production under acid soils: The Orissa scenario. Proceedings IPI-OUAT-IPNI International Symposium.
- Ramanathan, S., Natarajan, K., Stalin, P. (2004). Effect of foliar nutrition on grain yield of rice fallow black gram. Madras Agriculture, 91: 160-163.
- Richardson, A. (1994). Soil microorganisms and phosphorus availability. In: Pankhurst C. E., Doube B. M., Gupta V. V. S. R.(eds) Soil Biota: Management in Sustainable Farming Systems, CSIRO, Victoria. 50-62.
- Richardson, A. E. (2001). Prospects for using soil microorganisms to improve the acquisition of phosphorous by plants. Australian Journal of Plant Physiology, 28: 897-906.
- Richardson, A. E. (2004). Soil Microorganisms and Phosphorus Availability: Management in Sustainable Farming Systems, Melbourne, Australia, CSIRO. 50-62.
- Rudresh, D. L., Shivaprakash, M. K., Prasad R. D. (2005). Effect of combined application of Rhizobium, phosphate solubilizing bacterium and Trichoderma spp. on growth, nutrient uptake and yield of chickpea (Cicer aritenium L). Applied Soil Ecology, 28: 139-146.
- Sahoo, R. K., Tuteja, N. (2013). Effect of salinity tolerant PDH45 transgenic rice on physicochemical properties, enzymatic activities and microbial communities of rhizosphere soils. Plant Signaling and Behaviour, 15: e24950.
- Schulte, E. E., Kelling, K. A. (1996). Soil and applied phosphorous, In Understand Plant Nutrient. Earth Service, University of Wisconsin, Madison, Wisconsin.
- Shenoy, V. V., Kalagudi, G. M. (2005). Enhancing plant phosphorus use efficiency for sustainable cropping. Biotechnology Advances, 23: 501-513.
- Toro, M. (2007). Phosphate solubilizing microorganisms in the rhizosphere of native plants from tropical savannas: An adaptive strategy to acid soils? In: Velázquez E, Rodríguez-Barrueco C (eds) Developments in Plant and Soil Sciences, The Netherlands: Springer, 102: 249-252.
- Walpola, B. C., Yoon, M. H. (2012). Prospectus of phosphate solubilizing microorganisms and phosphorous availability in agricultural soils: A review. African Journal of Microbiology Research, 6(37): 6600-6605.
- Zou, K., Binkley, D., Doxtader, K. G. (1992). A new method for estimating gross phosphorus mineralization and immobilization rates in soils. Plant and Soil, 147: 243-250.
Submitted Date : 11-01-2018
Accepted Date : 27-06-2018
First Online: