Legume Research

  • Chief EditorJ. S. Sandhu

  • Print ISSN 0250-5371

  • Online ISSN 0976-0571

  • NAAS Rating 6.80

  • SJR 0.391

  • Impact Factor 0.8 (2024)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Legume Research, volume 43 issue 1 (february 2020) : 134-139

Molecular diversity of stress-tolerant PGPR rhizobia nodulating clusterbean (Cyamopsis tetragonoloba L.)  grown in hyper-arid zone of Rajasthan

Hemanta Kumar Mondal, Rajesh Gera
1Department of Microbiology, College of Basic Sciences and Humanities, CCS HAU, Hisar-125 004, Haryana, India.
  • Submitted04-09-2017|

  • Accepted15-11-2017|

  • First Online 17-02-2018|

  • doi 10.18805/LR-3938

Cite article:- Mondal Kumar Hemanta, Gera Rajesh (2018). Molecular diversity of stress-tolerant PGPR rhizobia nodulating clusterbean (Cyamopsis tetragonoloba L.) grown in hyper-arid zone of Rajasthan. Legume Research. 43(1): 134-139. doi: 10.18805/LR-3938.
A total of 81 rhizobia were retrieved from nodules of clusterbean grown in hyper-arid zone of Rajasthan. Twenty one rhizobial isolates showed combined drought tolerance of 40% concentration of polyethylene glycol 6000 and temperature tolerance at 45°C. All the stress-tolerant rhizobia were authenticated by plant infectivity test and further showed the presence of nitrogen fixation nifH gene. Most of the stress-tolerant rhizobia harbour multiple PGPR traits. The molecular diversity among stress-tolerant rhizobia was accomplished through RFLP of 16S rDNA using restriction enzymes MspI and HaeIII. Dendrogram data showed that all 21 isolates were distributed into two major clusters. Total of 20 genotypes were formed but 13 biotypes were constituted at 80% level of similarity. Out of these, biotype 10 was found to be the most prevalent biotype of hyper-arid zone. Moreover, isolates from same nodule were not 100% similar. It indicated that vast diversity was present among stress-tolerant clusterbean rhizobial isolates.
  1. Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., Struhl, K., Albright, L.M., Coen, D.M., Varki, A., Chanda, V.B. (eds.) (2001). Current Protocols in Molecular Biology. Vol. 1 Unit 2.4: John Wiley, New York.
  2. Beveridge, T.J. (2001). Use of Gram stain in microbiology. Biotech. Histochem., 76:111–118.
  3. Dudeja, S. S., Sheokand, S., Kumari, S. (2012). Legume Root Nodule Development and Functioning under tropics and subtropics: Perspectives and Challenges. Legume Res., 35: 85-103.
  4. Dworkin, M. and Foster, J. (1958). Experiments with some microorganisms which utilize ethane and hydrogen. J. Bacteriol., 75: 592–    603.
  5. Elsheikh, E. A. E. and Ibrahim, K. A. (1999). The effect of Bradyrhizobium inoculation on yield and seed quality of guar (Cyamopsis tetragonoloba L.). Food Chemistry. 65: 183-187.
  6. Gaiero, J. R., McCall, C. A., Thompson, K. A., Day, N. J., Best, A. S., Dunfield, K. E. (2013). Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am. J. Bot., 100: 1-13.
  7. Garg, V., Kukreja, K., Gera, R. (2016). Molecular diversity of Berseem (Trifolium alexandrinum L.) rhizobia isolated from Haryana soil. Legume Res., 39: 729-733.
  8. Gera, R., Kumar, V., Shekhawat, K., Goyal, S. (2013). Genotypic diversity in native rhizobial population nodulating Vicia faba in arid and semi-arid regions of Haryana state (India). Ann. Microbiol., doi, 10.1007/s13213-013-0695-9.
  9. Gordon, A.S. and Weber, P. (1951). Colorimetric estimation of indole acetic acid. Plant Physiol., 26: 192–195.
  10. Hassan, M.N., Afghan, S., Hafeez, F.Y. (2010). Suppression of red rot caused    by Colletotrichum falcatum on sugarcane plants using plant growth-promoting rhizobacteria. Biocontrol., 55: 531–542.
  11. Hussain, M. (2015). Agro-climatic zones and economic development of Rajasthan. Intl. J. Humanities and Social Science Invention., 4: 50-57.
  12. Keneni, A., Assefa, F., Prabu, P.C. (2010). Characterization of acid and salt tolerant Rhizobial strains isolated from Faba bean fields of Wollo, Northern Ethiopia. J. Agr. Sci. Tech., 12: 365-376.
  13. Khandelwal, A. and Sindhu, S. S. (2013). ACC Deaminase Containing Rhizobacteria Enhance Nodulation and Plant Growth in Clusterbean (Cyamopsis tetragonoloba L.). J. Microbiology Research., 3: 117-123.
  14. Kumar, V., Kayasth, M., Chaudhary, V., Gera, R. (2014). Diversity of diazotrophs in arid and semi-arid zones of Haryana and evaluation of their plant growth promoting potential on Bt-cotton and pearl millet. Ann. Microbiol., 64: 1301-1313.
  15. Kumara, B. N., Gangaprasad, S., Sridhara, S. (2015). Genetic diversity studies in guar (Cymopsis tetragonoloba L.) genotypes. The Bioscan., 7: 355-359.
  16. Mangla, B., Kukreja, K., Suneja, S., Dudeja, S.S. (2014). Symbiotic effectivity of high temperature tolerant clusterbean (Vigna radiata) rhizobia under different temperature conditions. Int. J. Curr. Microbiol. App. Sci., 3: 807-821.
  17. Mishra, B. K., Yadav, V., Vishal, M. K., Kant, K. (2013). Physiological and molecular characterization of clusterbean [Cyamopsis tetragonoloba (L.) taub] rhizobia isolated from different areas of Rajasthan, India. Legume Res., 36: 299-305.
  18. Mondal, H.K., Gera, R., Kumar, R. (2017a). Characterization of stress-tolerant mothbean rhizobia as PGPR and effect on plant growth promotion under stress. Green Farming, 8: 633-638.
  19. Mondal, H.K., Mehta, S., Kaur, H., Gera, R. (2017b). Characterization of stress tolerant mungbean rhizobia as PGPR and plant growth promotion under abiotic stress. Indian J. Ecology., 44: 38-42.
  20. [RACP] Rajasthan Agriculture Competitiveness Project. (2012). Department of Agriculture, Government of Rajasthan, January.
  21. Rohlf, F.J. (1998). On applications of geometric morphometrics to studies of ontogeny and phylogeny. Syst. Biol., 47: 147-158.
  22. Sarita, S., Sharma, P.K., Priefer, U.B. Prell, J. (2005). Direct amplification of rhizobial nodC sequences from soil total DNA and comparison to nodC diversity of root nodule isolates. FEMS Microbiol. Ecol., 54: 1-11.
  23. Sharma AK, Patel N, Painuli DK, Mishra D. (2015). Organic Farming in Low Rainfall Areas, Central Arid Zone Research Institute, Jodhpur, pp 48-58.
  24. Somasegaran, P. and Hoben, H.J. (1994). Handbook for rhizobia. Methods in Legume- Rhizobium Technology. Springer-Verlag, Berlin, New York.
  25. Vincent, S. P. (1970). A Manual for the Practical Study of the Root Nodule Bacteria. IBP Hand Book, No. 15, Black Well Scientific Publications, Oxford.
  26. Wadhwa, K., Dudeja, S. S., Yadav, R. K. (2011). Molecular diversity of native rhizobia trapped by five field pea genotypes in Indian soils. J. Basic Microbiol., 51: 89-97.
  27. Zahran, H. H. (2001). Rhizobia from wild legumes: diversity, taxonomy, ecology, nitrogen fixation and biotechnology. J. Biotechnol., 91: 143-153.

Editorial Board

View all (0)