Prevalence of bacteriocinogenic Rhizobium spp. in mungbean (Vigna radiata)

DOI: 10.18805/LR-3884    | Article Id: LR-3884 | Page : 557-564
Citation :- Prevalence of bacteriocinogenic Rhizobium spp. in mungbean (Vigna radiata).Legume Research-An International Journal.2019.(42):557-564
P.K. Maan, S. Garcha and G.S. Walia mprabhjotkaur@gmail.com
Address : Department of Microbiology, Punjab Agricultural University, Ludhiana-141 004, Punjab, India.
Submitted Date : 28-04-2017
Accepted Date : 2-02-2018

Abstract

The present work was undertaken to ascertain prevalence of bacteriocinogenic Rhizobium spp. in mungbean (Vigna radiata). Samples of rhizospheric soil and nodules were plated onto CRYEMA medium, selective for Rhizobium spp. From among the isolates obtained only four, designated as-N8, S1, S6, and S13 demonstrated bacteriocin production. Upto 104 AU/ml (Arbitrary Units/ml) of partially purified bacteriocin (PPB) was detected from N8 and S6. PPB obtained from N8 and S13 exhibited antagonism against indicator strain over a wide range of pH. All isolates of PPB were thermo-stable after heating to 90ºC for 5 minutes. N8 exhibited 14.2mm zone of inhibition after heating to 50ºC for 10 min. It decreased by 29.5% to 10mm (80ºC/ 10min). S6 exhibited zone of inhibition of 11mm (50ºC/10min) which decreased by 18.1% to 9mm (80ºC/10min). Dual inoculation of nitrogen fixing Rhizobium with bacteriocin producing Rhizobium can ensure greater benefit than using nitrogen fixer alone.

Keywords

Antagonism Bacteriocin Mungbean Rhizobium Zone of inhibition

References

  1. Abee, T.T.R., Klaenhammer, L. and Letellier, A. (1994). Kinetic studies of the action of lactacin F, a bacteriocin produced by Lactobacillus johnsonii that forms poration complexes in the cytoplasmic membrane. Applied Environmental Microbiology, 60: 1006-1013.
  2. Ahlawat, O.P. and Dadarwal, K.R. (1996). Bacteriocin production by Rhizobium species cicer and its role in nodule competence. Indian Journal of Microbiology, 36: 17-23.
  3. Ambika, R., Kavitha, P., Panneerselvam, A. and Sengottaian, N. (2014). Production of bacteriocin by Rhizobium isolated from rhizosphere soil of maize in Lalgudi Taluk, Trichy district, Tamil Nadu, India. International Journal of Current Research, 6: 5346-5348.
  4. Aneja, K.R. (2003). Experiments in Microbiology Plant Pathology and Biotechnology. New Age International Publishers, New Delhi, India. pp. 178-81
  5. Anonymous (2009). Detection of antimicrobial resistance in commom Gram negative and Gram positive bacteria encountered in infectious disease- an update. Indian Council of Medical Research, New Delhi. Pp 1-14.
  6. Barathiraja, S., Thanislass, J., Antony, P.X. and Venkatesaperumal, S. (2015). Antimicrobial activity of bacteriocin isolated and purified from rumen liquor collected from slaughtered goats. Indian Journal of Animal Research, 49(6):802-807.
  7. Bernearts, M.J. and Delay, J. (1963). A biochemical test for crown gall bacteria. Nature, 197: 406-07.
  8. Blanco, A.R., Sicardi, M. and Frioni, L. (2010). Competition for nodule occupancy between introduced and native strains of Rhizobium leguminosarum bv. trifolii. Biology and Fertility of Soils, 46: 419-25.
  9. Brewin, N., Beringer, E.J., Buchanan-Wollaston, A.V., Johnston, A.W.B. and Hirsch, P.R. (1980). Transfer of symbiotic genes with bacteriocinogenic plasmids in Rhizobium leguminosarum. Journal of General Microbiology, 116: 261-270.
  10. Butt, A.M., Khan, I.B., Haq, F. and Tong, Y. (2011). De novo structural modeling and computational sequence analysis of a bacteriocin protein isolated from Rhizobium leguminosarum bv. viciae strain LC-31. African Journal of Biotechology, 10: 7381-7388.
  11. Edulamudi, P., Masilamani, A.J.A., Divi, V.R.S.J. and Konada, V.M. (2011). Production Bacteriosin by Rhizobia obtained from Root nodules of Macrotyloma uniflorum (Lam.) Verdc. (Horse Gram). Bangladesh Journal of Microbiology, 28: 76-79.
  12. Goel, A.K., Sindhu, S.S. and Dadarwal, K.R. (1999). Bacteriocin-producing native rhizobia of Green Gram (Vigna radiata) having competitive advantage in nodule occupancy. Microbiology Research, 154: 43-48. 
  13. Gordon, D.M. and O’Brien, C.L. (2006). Bacteriocin diversity and the frequency of multiple bacteriocin production in Escherichia coli. Microbiology, 152: 3239-3244. 
  14. Gratia, A. (1925). Sur un remarquable example d’antagonisme entre deux souches de colibacille. Comptes Rendus Biologies, 93: 1040-1042.
  15. Gross, D.C. and Vidaver, A. K. (1978). Bacteriocin-like substance produced by Rhizobium japonicum and other slowgrowing rhizobia. Applied and Environmental Microbiology, 36: 936-943.
  16. Hafeez, F.Y., Naeem, F.I., Naeem, R., Zaidi, A.H. and Maalik, K.A. (2005). Symbiotic effectiveness and bacteriocin production by Rhizobium leguminosarum bv. viciae isolated from agriculture soil in Faisalabad. Environmental and Experimental Botany, 54: 142-147.
  17. Harris, P.J. and Woodbine, M. (1967). Antibiotic resistance of soil bacteria. Plant and Soil, 27: 167-171.
  18. Hirsch, P.R. (1979). Plasmid determined bacteriocin production by Rhizobium leguminosarum. Journal of General Microbiology, 113: 219-228.
  19. Hodgson, A.L.M., Roberts, W.P. and Waid, J.S. (1985). Regulated nodulation of Trifolium subterraneum inoculated with bacteriocin producing strains of Rhizobium trifolii. Soil Biology and Biochemistry, 20: 19-24. 
  20. Johnson, H.W., Means, U.M. and Weber, C.R. (1965). Competition for nodule sites between strains of R. japonicum applied as inoculums and strains in the soil. Journal of Agronomy, 57: 179-85.
  21. Joseph, M.V., Desai, D.J. and Desai, A.J. (1983). Production of antimicrobial and bacteriocin-like substance by Rhizobium trifolii. Applied and Environmental Microbiology, 45: 532-535. 
  22. Joseph, M.V., Desai, D.J. and Desai, A.J. (1985). Possible involvement of phage like structure in antagonism of cowpea rhizobia by Rhizobium trifolii. Applied and Environmental Microbiology, 49: 459-468.
  23. Kimura, H., Sashihara, T., Matsusaki, H., Sonomoto, K. and Ishizaki, A. (1998). Novel bacteriocin of Pediococcus spp. ISK-1 isolated from well-aged bed of fermented rice bran. Annuals of New York Academy of Sciences, 864: 337-349.
  24. Leroy, F. and De Vuyst, L. (1999). Temperature and pH conditions that prevail during fermentation of sausages are optimal for production of the antilisterial bacteriocins Sakacin K. Applied Environmental Microbiology, 65: 974-981.
  25. Lotz, W. and Mayer, F. (1972). Isolation and characterization of a bacteriophage tail like bacteriocin from a strain of Rhizobium. Journal of Virology, 9: 160-173.
  26. Lovisohn, R., Konisky, J. and Nomura, M. (1968). Interaction of colicins with bacterial cells IV. Immunity breakdown studied with colicins Ia and Ib. Journal of Bacteriology, 96: 811-821.
  27. Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951). Protein measurements with the Folin phenol reagent. Journal of Biological Chemistry, 193: 265.
  28. Nirmala, J., Gaur, Y.D. and Lawrence, P.K. (2001). Isolation and characterization of a bacteriocin by cicer Rhizobium. World Journal of Microbiology and Biotechnology, 17: 795-799. 
  29. Oresnik, I.J., Twelker, S. and Hynes, M.F. (1999). Cloning and characterization of Rhizobium leguminosarum gene encoding a bacteriocin with similarities to RTX toxin. Applied and Environmental Microbiology, 65: 2833-2840.
  30. Pham, H.T., Riu, K.Z., Jang, K.M., Cho, S.K. and Cho, M. (2004). Bactericidal activity of glycinecin A, a bacteriocin derived from Xanthomonas campestris pv. glycines, on phytopathogenic Xanthomonas campestris pv. vesicatoria cells. Applied Environmental Microbiology, 70: 4486-4490.
  31. Pangsomboo, K., Bansal, S., Martin, G.P., Suntinanalert, P., Kaewnopparar, S. and Srichana, T. (2009) Further characterization of a bacteriocin produced by Lactobacillus paracasei HL32. Journal of Applied Microbiology 106: 1928-48
  32. Riley, M.A. and Wertz J.E. (2002). Bacteriocin diversity: ecological and evolutionary perspectives. Biochimie, 84: 357-364.
  33. Robleto, E. A., Kmiecek, K., Oplinger, E.S., Nienhuis, J. and Triplett, E.W. (1998). Trifolitoxin production increases nodulation competitiveness of Rhizobium etli CE3 under agricultural conditions. Applied and Environmental Microbiology, 64: 2630-2633.
  34. Rodelas, B., Gonzalez-Lopez, J., Salmeron, V., Martinez-Toledo, M.V. and Pozo, C., (1998). Symbiotic effectiveness and bacteriocin production by Rhizobium leguminosarum bv.viceae isolated from agricultural soils in Spain. Applied Soil Ecology, 8: 51-60. 
  35. Roslycky, E.B. (1967). Bacteriocin production in the rhizobia bacteria. Canadian Journal of Microbiology, 13: 431-432.    Schwinghamer, E. A. (1971). Antagonism between strains of R. trifolii in culture. Soil Biology and Biochemistry, 3: 355-363.
  36. Schwinghamer, E. A. and Belkengren, R.P. (1968). Inhibition of rhizobia by a strain of R. trifolii. Some properties of the antibiotic and of the strain. Archives of Microbiology, 64: 130-145.
  37. Schwinghamer, E.A. and Brockwell, J. (1978). Competitive advantage of bacteriocin and phage-producing strains of Rhizobium trifolii in mixed culture. Soil Biology and Biochemistry, 10: 383-387.
  38. Schwinghamer, E. A., Pankhurst, C. E. and Whitfeld, P. R. (1973). A phage-like bacteriocin of R. trifolii. Canadian Journal of Microbiology, 19: 359-368.
  39. Schwinghamer, E. A. and Reinhardt, D.J. (1963). Lysogeny in Rhizobium leguminosarum and R. trifolii. Australian Journal of Biological Science, 16: 597-605.
  40. Sridevi, M. and Mallaiah, K.V. (2008). Production of bacteriocins by root nodule bacteria. International Journal of Agriculture Research, 3: 161-165.
  41. Tagg, J.R., Dajani, A. and Wannanaker, L.W. (1976). Bacteriocins of Gram positive bacteria. Bacteriological Reviews, 40: 722-756.
  42. Thakar, A.J., Dube, H.C. and Patel, R.J. (1990). Bacteriocin-dependent inhibition of Rhizobium meliloti strains in mixed cultures. Indian Journal of Experimental Biology, 28: 55-57.
  43. Triplett, E.W. (1990). Construction of a symbiotically effective strain of Rhizobium leguminosarum bv. trifolii with increased nodulation competitiveness. Applied Environmental Microbiology, 56: 98-103. 
  44. Triplett, E. W. and Barta, T. M. (1987). Trifolitoxin production and nodulation are necessary for the expression of superior nodulation competitiveness by Rhizobium leguminosarum bv. trifolii strain T24 on clover. Journal of Plant Physiology, 85: 335-342.
  45. Van-Brussel, A.A.N., Zaat, S.A.J., Wijffelman, C.A., Pees, E. and Lugtenberg, B.J.J. (1985). Small bacteriocins of fast growing rhizobia is chloroform soluble and is not required for effective nodulation. Journal of Bacteriology, 162: 1079-108.
  46. Vincent, J.M. (1970). A Manual for the Pratical Study of the Root Nodule Bacteria. IBP Handbook and Blackwell Scientific Publications, Oxford.
  47. Warda, A., Zoubida, B.H., Faiza, B.Z., Yamina, A. and Bekki, A. (2014). Selection and Characterization of inhibitor agents (bacteriocin like) produced by Rhizobial strains associated to Medicago in Western Algeria. International Journal of Agricultural Crop Sciences, 7: 393-401.
  48. Wilson, R.A., Handley, B.A. and Beringer, J.E. (1998). Bacteriocin production and resistance in a field population of Rhizobium leguminosarum biovar viciae. Soil Biology and Biochemistry, 30: 413-417.
  49. Yang, R., Johnson, M.C. and Ray, B. (1992). Novel method to extract large amounts of bacteriocins from Lactic acid bacteria. Applied and Environmental Microbiology, 58: 3355-3359.
  50. Pangsomboo, K., Bansal, S., Martin, G.P., Suntinanalert, P., Kaewnopparat, S. and Srichana, T. (2009) Further characterization of a bacteriocin produced by Lactobacillus paracasei HL32. Journal of Applied Microbiology 106: 1928-40.
  51. Nirmala J, Gaur Y D and Lawrence P K (2001) Isolation and characterization of a bacteriocin by cicer Rhizobium. World J Microbiol Biotech 17: 795-9. 

Global Footprints