Legume Research

  • Chief EditorJ. S. Sandhu

  • Print ISSN 0250-5371

  • Online ISSN 0976-0571

  • NAAS Rating 6.80

  • SJR 0.391

  • Impact Factor 0.8 (2024)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Legume Research, volume 41 issue 4 (august 2018) : 510-518

Trait patterns of mungbean, black gram and rice bean

C.H. Chang, Y.Y Chou, F. Yndgaard, , S.Ø. Solberg
1World Vegetable Center, P.O. Box 42, Shanhua, Tainan-74199, Taiwan
  • Submitted04-07-2017|

  • Accepted04-09-2017|

  • First Online 05-12-2017|

  • doi 10.18805/LR-378

Cite article:- Chang C.H., Chou Y.Y, Yndgaard F., Solberg S.Ø. (2017). Trait patterns of mungbean, black gram and rice bean. Legume Research. 41(4): 510-518. doi: 10.18805/LR-378.
Food legumes like mungbean (Vigna radiata var. radiata), black gram (Vigna mungo), and rice bean (Vigna umbellata) have potential to diversify diets and agro-ecosystems of the tropics. Access to genetic diversity and phenotypic data are key issues for crop improvement. Large germplasm collections like the one at the World Vegetable Center may be used in detecting trait relationships and to identify accessions of interest for breeding. The current study provides results of more than 30 years of field characterization, including 9 numeric and 15 categorical descriptors and more than 10,000 accessions or sub-accessions. Core collections were established in black gram and rice bean. A positive correlation was detected between yield components such as seed size and pod length, and between these yield components and less desirable traits such as plant height and late maturity. High within-accession diversity was identified in several of the accessions.
  1. Akhtar, K.P., Sarwar, G., Abbas, G., Asghar, M.J., Sarwar, N., Shah, T.M.K. (2011). Screening of mungbean germplasm against mungbean yellow mosaic India virus and its vector Bemisia tabaci. Crop Protection, 30:1202–1209.
  2. AVGRIS (2017). The AVRDC Vegetable Genetic Resources Information System. Available online at: https://avrdc.org/our-work/    managing-germplasm (accessed 19 May 2017).
  3. Bag, M.K., Gautam, N.K., Prasad, T.V., Pandey, S., Dutta, M., Roy, A. (2014). Evaluation of an Indian collection of black gram germplasm and identification of resistance sources to mungbean yellow mosaic virus. Crop Protection, 61:92-101.
  4. Bhattacharya, A. and Vijaylaxmi, A. (2005). Genetic diversity in mungbean: phenological, physiological and yield forming traits. Legume Research, 28:1-6.
  5. Bisht, I.S., Mahajan, R.K., Patel, D.P. (1998). The use of characterisation data to establish the Indian mungbean core collection and assessment of genetic diversity. Genetic Resources and Crop Evolution, 45:127–33.
  6. Brezeanu, C., Robu, T., Brezeanu, P.M., Ambarus, S. (2015). Promoting breeding of new mung bean genotypes for sustainable agriculture and food security. Journal of Horticulture, Forestry and Biotechnology, 19:21-23.
  7. Cheng, X.Z. and Wang, S.H. (1998). Appraisal on Chinese mung bean germplasm resources. Crop Genetic Resources, 1998(4):9-11.
  8. Chitra, U., Vimala, V., Singh, U., Geervani, P. (1995). Variability in phytic acid content and protein digestibility of grain legumes. Plant Food for Human Nutrition, 47:163–72.
  9. Crossa, J., Hernandez, C.M., Bretting, P., Eberhart, S.A., Taba, S. (1993). Statistical genetic considerations for maintaining germplasm collections. Theoretical and Applied Genetics, 86:673-678.
  10. Drabo, I., Ladeinde, T.A.O., Smithson, J.B., Redden, R. (1988). Inheritance of Eye Pattern and Seed Coat Colour in cowpea (Vigna unguiculata [L.] Walp.). Plant Breeding, 100:119–123.
  11. FAO (2014). FAOSTAT Production Databases. Available online at: http://www.faostat.fao.org (Accessed on July 30, 2017).
  12. IIPR (2017) Indian Institute for Pulse Research. Available online at: http://www.iipr.res.in (Accessed on January 30, 2017).
  13. Khattak, G.S.S., Haq, M.A., Ashraf, M., McNeilly, T. (2001). Genetic basis of variation of yield, and yield components in mungbean (Vigna radiata (L.) Wilczek). Hereditas, 34:211-217.
  14. Koo, B., Pardey, P.G., Wright, B.D. (2003). The economic costs of conserving genetic resources at the CGIAR centres. Agricultural Economics, 29:287-297.
  15. Kumar, R., Ali, S., Rizvi, S.M.A. (2006). Screening of mungbean genotypes for resistance against whitefly, Bemisia tabaci and mungbean yellow mosaic virus. Indian Journal of Pulses Research, 19(1):135-136.
  16. Leimu, R., Mutikainen, P., Koricheva, J., Fischer, M. (2006). How general are positive relationships between plant population size, fitness and genetic variation? Journal of Ecology, 94:942–952.
  17. Lewis, G., Schrire, B., Mackinder, B., Lock, M. (2005). Legumes of the world. Kew, Royal Botanic Gardens, London.
  18. Li, L., Yang, T., Liu, R., Redden, B., Maalouf, F., Zong, X. (2017). Food legume production in China. The Crop Journal, 5:115-126.
  19. Liu, C.Y., Wang, S.H., Wang, L.X., Sun, L., Mei, L.. Xu, N., Cheng, X.Z. (2008). Establishment of candidate core collection in Chinese mungbean germplasm resources. Acta Agronomica Sinica, 34:700-705.
  20. Lumpkin, T.A. and McClary, D.C. (1994). Azuki bean: Botany, Production and Uses. CAB International, Wallingford, UK. Nair, R., Schafleitner, R., Kenyon, L., Srinivasan, R., Easdown, W., Ebert, A. et al (2012). Genetic improvement of mungbean. SABRAO Journal of Breeding and Genetics, 44:177–190.
  21. Price, T.V (1988). Seed Sprout Production for Human Consumption — A Review. Canadian Institute of Food Science and Technology, 21:57-65. 
  22. Raje, R.S. and S.K. Rao (2004). Stability analysis for seed yield in mung bean [Vigna radiata (L.)Wilczek]. Legume Research, 27(1):11-18.
  23. Rao, C.M., Rao, Y.K., Reddy, M.V. (2006). Evaluation of mung bean germplasm for yield and yield components. Legume Research, 29:73-75.
  24. Raturi A., Singh S.K., Sharma V and Pathak R. (2015). Genetic variability, heritability, genetic advance and path analysis in mungbean [Vigna radiata (L.) Wilczek]. Legume Research 38(2):157-163.
  25. R Core Team. (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ (accessed 20 November 2015).
  26. Schafleitner, R., Nair, R., Rathore, A., Wang, Y., Lin, C., Chu, S., et al. (2015). The AVRDC–The World Vegetable Center mungbean (Vigna radiata) core and mini core collections. BMC Genomics, 16:344, doi:10.1186/s12864-015-1556-7.
  27. Sharma, S., Upadhyaya, H., Varshney, R., Gowda, C., Jackson, S., Hayden, C., Scaboo, A. (2013). Pre-breeding for diversification of primary gene pool and genetic enhancement of grain legumes. Frontiers in Plant Science, doi:10.3389/fpls.2013.00309.
  28. Takeya, M., Yamasaki, F., Hattori, S., Kaga, A., Tomooka, N. (2013). Systems for making NIAS Core Collections, single- seed-derived germplasm, and plant photo images available to the research community. Genetic Resources and Crop Evolution, 60:1945–1951.
  29. Tomooka, N., Kaga, A., Isemura, T., Vaughan, D.A., Srinives, P., Somta, P., et al. (2010). Vigna Genetic Resources. Proceedings of the 14th NIAS International Workshop on Genetic Resources, Genetics and Comparative Genomics of Legumes (Glycine and Vigna).National Institute of Agrobiological Sciences, Japan. pp. 11–21.
  30. Upadhyaya, H.D., Ortiz, R. (2001). A mini core subset for capturing diversity and promoting utilization of chickpea genetic resources in crop improvement. Theoretical and Applied Genetics, 102:1292–1298. doi:10.1007/s00122-001-0556-y.
  31. Zeven, A.C. (1998). Landraces: a review of definitions and classifications. Euphytica, 104:127–139

Editorial Board

View all (0)