Effects of dosage and durations of different mutagenic treatment in lentil (Lens culinaris Medik.) cultivars Pant L 406 and DPL 62

DOI: 10.18805/LR-3757    | Article Id: LR-3757 | Page : 500-509
Citation :- Effects of dosage and durations of different mutagenic treatment in lentil (Lens culinaris Medik.) cultivars Pant L 406 and DPL 62.Legume Research.2018.(41):500-509
Tuba Taziun, Rafiul Amin Laskar, Ruhul Amin, Samiullah Khan and Kouser Parveen rafihkd@gmail.com
Address : Mutation Breeding Laboratory, Department of Botany, Aligarh Muslim University, Aligarh - 202 002, Uttar Pradesh, India.
Submitted Date : 29-07-2016
Accepted Date : 17-04-2017


In order to broaden the genetic base of lentil, induced chemical mutagenesis was performed. Dry and healthy seeds of lentil cultivars Pant L 406 and DPL 62 were treated with 0.02% MMS (6hrs), 0.04% MMS (6hrs), 0.02% MMS (9hrs) and 0.04% MMS (9hrs) prepared in sodium phosphate buffer at 7.0 pH for 6 hours at room temperature.  Bio-physiological observations showed almost a direct relationship with the MMS concentrations and treatment duration, where inhibition and sterility increases with increase in concentration and duration. The 0.02% and 0.04% for 6 hrs treatments of MMS were found effective in inducing sufficient genetic variability in both the cultivars of lentil especially for selection of yield attributing traits, and 0.04% for 9 hrs induced higher desirable phenotypic variations with few unique phenotypes of future interest, whereas 0.04% for 9 hrs found to have highest lethal dose value and % variations in the all variant small survival population. Plant habit and leaf morphology were found most sensitive phenotypic category towards the MMS doses used. Also the character association between yield and other agronomic traits were altered and improved due to the mutagenic treatments. Overall, the results were promising and useful for future crop improvement work on lentil.


Character association Lentil (Lens culinaris L.) Methyl methanesulphonate (MMS) Phenotype Quantitative traits.


  1. Amin R., Laskar R. A. and Khan S. (2015). Assessment of genetic response and character association for yield and yield components in Lentil (Lens culinaris L.) population developed through chemical mutagenesis. Cogent Food & Agriculture. 1: 1000715.
  2. Arulbalachandran, D. and Mullainathan, L. (2009). Chlorophyll and morphological mutants of blackgram (Vigna mungo (L.) Hepper) derived by gamma rays and EMS. J. Phytology. 1(4): 236-241.
  3. Arumugam, S, Reddy, V. R. K., Asir, R., Viswanathan, P. and Dhamodaran, S. (1997). Induced mutagenesis in barley. Adv. Pl. Sci. 10(1):103-106.
  4. Arumuganathan, K., and Earle, E. D. (1991). Nuclear DNA content of some important plant species. Plant Mol Biol. 9: 208-218. 
  5. Babariya, H. M., Vaddoria, M. A., Mehta, D. R., Madariya, R. D., and Monpara, B. A. (2008). Effect of mutagens on characters association in Clusterbean (Cyamopsis tetragoaloba L. Taub). International Journal of Bioscience Reporter. 6: 135–140.
  6. Barulina, H. (1930). Lentils of the USSR and other countries. Bulletin of Applied Botany, Genetics and Plant Breeding. 40: 265–304.
  7. Cabrera, R. I. (2004). Evaluating yield and quality of roses with respect to nitrogen fertilization and leaf nitrogen status. XXV International Horticulturae Congress. Acta Horticulturae. 511.
  8. Gaul, H. (1964). Mutations in plant breeding. Rad Bot. 4: 155-232.
  9. Khan, S., Wani M. R. and Parveen, K. (2006). Sodium azide induced high yielding early mutant in lentil. Agric. Sci. Digest, 26(1): 65-66.
  10. Krishna, G., Shivashankar, G. and Nath, J. (1984). Mutagenic response of Rhodes grass (Choris gayana Kunth.) to gamma rays. Environ. Exp. Bot. 24: 197-205.
  11. Kumar, J. and Srivatava, E. (2015). Impact of reproductive duration on yield and its component traits in lentil. Legume Research. 38 (2): 139-148
  12. Kumar, G. and Rai, P. K. (2007). EMS induced karyomorphological variations in maize (Zea mays L.) inbreds. Turk. J. Biol. 31: 187-    195.
  13. Larcher, W. (1995). Physiological plant ecology. In: Ecophysiology and Stress Physiology of Functional Groups, (3rd ed.). Springer, New York, 1-528.
  14. Laskar, R. A. and Khan, S. (2014). Mutagenic effects of MH and MMS on induction of variability in broad bean (Vicia faba L.). An. Res. Rev. Biol. 4(7): 1129-1140.
  15. Latief, A. A., Bosoul, E., Aukour, F., Al-Ajlouni, Z., Al-Azzam, M., & Ajlouni, M. M. (2011). Genetic variation for quantitative traits in Jordanian lentil landraces. Adv. Env. Biol. 5: 3676–3680.
  16. Mackinney G. 1941. Absorption of light by chlorophyll solutions. J. Biol Chem. 40: 315-322.
  17. Micke, A. (1979). Crop improvement by induced mutations. Use of mutation induction to alter the ontogenic pattern of crop plants. Gamma Field Symp. 18: 1-23.
  18. Micke, A., (1988). Genetic improvement of grain legumes using induced mutations. In: Improvement of Grain Legume Production Using Induced Mutations, IAEA, Vienna. 1-51.
  19. Mitra, P. K. and Bhowmik, G. (1996). Cytological abnormalities in Nigella sativa induced by gamma rays and EMS. J. Cytol. Genet. 31: 205-215.
  20. Ramesh B., Prasad, B. K. and Singh, V. P. (2001). Semi-dwarf, high yielding and high protein mutants in barley. Mutation Breeding Newsletter. 45: 26-27.
  21. Sakai, K. I., and Suzuki, A. (1964). Induced mutation and pleiotropy of genes responsible for quantitative characters in rice. Rad. Bot. 4: 141–151. 
  22. Shamsuzzaman, K. M., Islam, M. M., Begum, M. and Subhan A. (2005). Development of an early maturing chickpea variety, BINASOLA-3. Mut. Breed. Newslet. Rev. 1: 8-9.
  23. Simova-Stoilova, L. J., Stoyanova, Z. and Demirevska-Kepova, K. (2001). Ontogenic changes in leaf pigments, total soluble protein and Rubisco in two barley varieties in relation to yield. Bulg. J. Plant Physio. 27(1-2): 15-24.
  24. Singh, S. P., Singh, R. P., Prasad, J. P., Agrawal, R. K. and Singh, J. P. (2006). Induced genetic variability for protein content, yield and yield components in microsperma lentil (Lens culinaris Medik). Madras Agric. J. 93 (7-12): 155-159.
  25. Solanki, I.S. and Rana, A. (2016). Induction and harnessing of polygenic variability in lentil (Lens culinaris Medik.). Legume Research. 39 (2): 170-176.
  26. Taylor, L. P. and Hepler, P. K. (1997). Pollen germination and tube growth. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 461–491.
  27. Toker, C., Shyam, S., Yadav, S. S. and Solanki, I. S. (2007). Mutation Breeding. In: Lentil: An Ancient Crop for Modern Times [Shyam S. Yadav, David L. McNeil and Philip C. Stevenson (eds.)], Springer. 209-224.
  28. Tucker, R. (2004). Primary nutrients and plant growth. In: Essential Plant Nutrients, North Carolina Department of Agriculture.
  29. Van Oss, H., Aron, Y. and Ladizinsky, G. (1997). Chloroplast DNA variation and evolution in the genus Lens Mill. Theo. Appl. Genet. 94: 452-457.
  30. Waghmare, V. N., and Mehra, R. B. (2000). Induced quantitative variability for quantitative characters in grasspea (Lathyrus sativus L.). Indian J. Genet. 60: 81–87.
  31. Wang, L. Z., Wang, L., Zhao,R. J., Pei, Y. L., Fu,Y. Q., Yan, Q. S. and Li, Q. (2003b). Combining radiation mutation techniques with biotechnology for soybean breeding. In: Improvement of new and traditional industrial crops by induced mutations and related biotechnology. IAEA, Vienna. 107-115.
  32. Yadav, S. S., Stevenson, P. C., Rizvi, A. H., Manohar, M., Gailing, S., and Mateljan, G., (2007). Uses and consumption. In: Lentil, The Ancient Crop for Modern Times. Dordrecht: Springer.
  33. Yaqoob, M., and A. Rashid (2001). Induced mutation studies in some mungbean (Vigna radiata (L.) Wilczek) cultivars. Online J. Biol. Sci. 1(9): 805-808.

Global Footprints