Enhanced quality fodder production through grass-legume intercropping under arid eco-system of Kachchh, Gujarat

DOI: 10.18805/lr.v0i0.7596    | Article Id: LR-3713 | Page : 896-900
Citation :- Enhanced quality fodder production through grass-legume intercropping under arid eco-system of Kachchh, Gujarat .Legume Research-An International Journal.2017.(40):896-900

Sushil Kumar, Deepesh Machiwal, Devi Dayal and A.K. Mishra 

sushilangrau@gmail.com
Address :

ICAR-Central Arid Zone Research Institute, Regional Research Station, Kukma-370 105 Bhuj, Gujarat, India.

Submitted Date : 5-04-2016
Accepted Date : 3-08-2016

Abstract

Growth and development of huge livestock population of Kachchh is dependent on availability of quality fodder. The quality fodder shortage can be partially met out by cultivating grasses-legumes in intercropping systems. Therefore, this study with the aim of identifying best grass-legume intercropping system for enhanced quality fodder production was undertaken in randomized complete block design with three replications at Bhuj Gujarat, India. Dicanthium annulatum in combination of Clitoria ternatia and Stylosanthes hamata recorded 8096 and 8040 kg ha-1 fresh herbage and 4665 and 4622 kg ha-1 dry matter yield, respectively. Further, Dicanthium annulatum+Clitoria ternatia and Dicanthium annulatum+Stylosanthes hamata resulted significantly maximum crude protein yield, 685 and 668 kg ha-1, respectively over rest of the treatments. Thus, it may be concluded that  Dicanthium annulatum (DA) grass based intercropping systems are the best grass-legume intercropping system for enhanced quality fodder production for the arid condition of the Kachchh for overall development of livestock sector. 

Keywords

Arid eco-system Fodder quality Grass-legume intercropping Land equivalent ratio Yield parameters.

References

  1. AOAC. (1995). Official Methods of Analysis. Association of official analytical chemists. Washington, D.C.
  2. Gao, Ying., Wu, Pute., Zhao, Xining. and Wang, Ziui. (2014). Growth, yield and nitrogen use in the wheat/maize intercropping system in an arid region of northwestern China. Field Crops Res.167:19-30.
  3. Giambalvo, D., Ruisi, P., Miceli, G.D., Frenda, A. S. and Amato, G. (2011). Forage production, N uptake, N2 fixation, and  N recovery of berseem clover grown in pure stand and in mixture with annual ryegrass under different managements.Plant Soil. 342:379–391.
  4. GIDE. (2004). Grassland action plan for Kachchh district, Gujarat state part of Kachchh Ecology Planning Project Phase-  II. Final Report Submitted to UNDP, Gandhinagar.
  5. Gomez, K. A. and Gomez, A. A. (1984). Statistical Procedures for Agricultural Research. 2 Edition. A Wiley Interscience         Publication, NewYork, 657 p.
  6. Haynes, R. J. (1980). Competitive aspects of grass-legume association.  Adv.in  Agron. 33:227-261. 
  7. ICAR. (2012). Forage crops and grasses. In: Handbook of Agriculture, 6th ed. 2012, ICAR, New Delhi
  8. Jones, D. I. H. (1981). Chemical composition and nutritive value of alfalfa. In: Sward Measurement Handbook, [Handson, J., Baker, R.D., Davies, A., Laidlows, A.S., Leawer, J.D., (Eds.)], The British Grassland Society, Berkshire, UK,         pp. 243-265.
  9. Koc, A., Erkovan, S., Erkovan, H. I., Oz, U., Birben, M. M. and Tunc, R. (2013). Competitive effects of plant species under different sowing ratios in some annual cereal and legume mixtures. J. of  Animal and Vet. Adv. 12:509-520.
  10. Kusvuran, A., Kaplan, M. and Nazli R. I. (2014). Intercropping of Hungarian vetch (Vicia pannonica crantz.) and barley  (Hordeum vulgare L.) under different plant varieties and mixture rates. Legume Res. 37:590-599.
  11. Mooso, G. D. and Wedin, W. F. (1990). Yield dynamics of canopy components in alfalfa-grass mixtures. Agron J. 82:696-701.
  12. Mut, Z., Akay, H. and Erbas, O. D. (2015). Hay yield and quality of oat (Avena sativa L.) genotypes of worldwide origin. Int. J. of Plant Prod. 9: 1735-6814.
  13. Okalebo J. R., Gathua K. W. and Woomer P. L. (2002). Laboratory methods of soil and plant analysis: A working manual,  Second Edition, Nairobi, Kenya.128 p.
  14. Pudnam A. R. and Duke W. B. (1978). Allelopathy in agro eco-systems. Annual Rev. Phytopathol. 16:431-451.
  15. Ram, B., Meena, S. L., Dayal, D. and Shamshudheen, M. (2013). Stability in performance of marvel grass genotypes  (Dichanthium annulatum) under north western arid rangeland. Range Managmt and Agroforest. 34:151-154. 
  16. Ram, S. N. (2008). Productivity and quality of pasture as influenced by planting pattern and harvesting intervals under semiarid conditions. Indian J. of Agri. Res. 42:128-131.
  17. Ram, S. N. (2009). Effect of row ratios and fertility levels on performance of Guinea grass+ stylosathes hamata intercropping system under rainfed conditions. Range Managmt and Agroforest. 30:130-135.
  18. Sadeghpour, A., Jahanzad, R., Hashemi, M., Esmaeili, A., Stephen, J. and Herbert, M. (2013). Intercropping annual medic (Medicago scutellata L.) with barley (Hordeum vulgare L.) may improve total forage and crude protein yield in         semi-arid environment. Australian J. of Crop Sci. 7: 1822-1828. 
  19. Sanderson, M. A., Brink, G., Stout, R. and Ruth, L. (2013). Grass-legume proportions in forage seed mixtures and effects  on herbage yield and weed abundance. Agron. J. 105: 1289-1297.
  20. Sengul, S. (2003). Performance of some forage grasses or legumes and their mixtures under dryland conditions. Eur. J. of   Agron. 19:401-409.
  21. Ullah, M. A., Hussain, N., Schmeisky, H. and Rasheed, M. (2015). Inoculation and inter-cropping of legumes in established grass for increasing biomass of Fodder. Pakistan J. of Agri. Res. 28:126-135. 
  22. Whitehead, D. C. (1995). Grassland Nitrogen. CAB International, Wallingford, UK, p. 387.
  23. Willey, R. W. (1979). Intercropping- its importance and research needs. Competition and yield advantage. Field Crops   Abst. 32:1-10.
  24. Yang, C. H., Huang, G. B., Chai, Q. and Luo, Z. X.  (2011). Water use and yield of wheat/maize intercropping under alternate irrigation in the Oasis field of northwest China. Field Crops Res. 124:426–432.
     

Global Footprints