Legume Research

  • Chief EditorJ. S. Sandhu

  • Print ISSN 0250-5371

  • Online ISSN 0976-0571

  • NAAS Rating 6.80

  • SJR 0.391

  • Impact Factor 0.8 (2023)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Legume Research, volume 40 issue 5 (october 2017) : 929-939

Biochemical basis of genotypic and bio-agent induced stem rot resistance in groundnut

Riddhi H. Rajyaguru, Thirumalaisamy P.P., Kirankumar G. Patel, Jignasha T. Thumar
1ICAR-Directorate of Groundnut Research, Junagadh-362 001, Gujarat, India
Cite article:- Rajyaguru H. Riddhi, P.P. Thirumalaisamy, Patel G. Kirankumar, Thumar T. Jignasha (2017). Biochemical basis of genotypic and bio-agent induced stem rot resistancein groundnut. Legume Research. 40(5): 929-939. doi: 10.18805/lr.v40i04.9004.
Stem rot (Sclerotium rolfsii Sacc.) resistance in groundnut genotypes was due to activities of defense enzymes such as, catalase, peroxidase and polyphenol oxidase. Bio-agent, Bacillus amyloliquefaciens isolated from groundnut rhizosphere enhances the activities of defense enzymes through salicylic acid induced systemic resistance. In resistant genotypes (NRCGCS-19 and NRCGCS-319) higher activities of defense enzymes were recorded constitutively while in susceptible genotypes it was increased after bio-agent treatment. The activities of pathogenesis related-proteins viz., polygalacturonase and chitinase were registered in plants inoculated with S. rolfsii. Enzymes, catalase, peroxidase, polyphenol oxidase and chitinase showed strong negative correlation with disease severity index. However, the activity of polygalacturonase was directly related to disease severity index and inversely related to activity of chitinase. Hence, to obtain required levels of crop protection against S. rolfsii one has to grow either resistant genotypes or bio-agent treated susceptible genotypes.
  1. Amruta, S., Ashutosh, V., Ritu, M. and Pushpa, R. (2014). Changes in activity of enzymes involved in maintaining ROS in ground nut during salt stress. Res. J. Agricul. For. Sci. 2 (5): 1-6.
  2. Aneja, K.R. (1996). Experiments in Microbiology, Plant pathology, Tissue culture and Mushroom Cultivation. Wishwa Prakashan, New Age International Pvt Ltd., New Delhi.
  3. Anonymous. (2012). All India Coordinated Research Project on Groundnut reports. Directorate of Groundnut Research, Junagadh.
  4. Bera, S.K., Kasundra, S.V., Kamdar, J.H., Ajay, B.C., Chunilal, Thirumalaisamy, P.P., Dash, P. and Maurya, A.K. (2014). Variable response of interspecific breeding lines of groundnut to Sclerotium rolfsii infection under field and laboratory conditions. Electron. J. Plant Breeding, 5 (1): 22-29.
  5. Bowles, D.J. (1990.) Defense-related proteins in higher plants. Annu. Rev. Biochem., 59: 873-907.
  6. Bruce, R.J. and West, C.A. (1989). Elicitation of lignin biosynthesis and isoperoxidase activity by pectic fragments in suspension cultures of castor bean. Plant Physiol., 91 (3): 889-897.
  7. Buensanteai, N., Athinuwat, D., Chatnaparat, T., Yuen, G.Y. and Prathuangwong, S. (2008). Extracellular proteome of Bacillus amyloliquefaciens KPS46 and its effect on enhanced growth promotion and induced resistance against bacterial pustule on soybean plant. Kasetsart J. (Nat. Sci.), 42: 13-26.
  8. Choudhary, D.K. and Johri, B.N. (2009). Interactions of Bacillus spp. and plants–with special reference to induced systemic resistance (ISR). Microbiol. Res., 164: 493-513.
  9. Fery, R.L. and Dukes, P.D. (2002). Southern blight (Sclerotium rolfsii Sacc.) of cowpea: yield-loss estimates and sources of resistance. Crop Protec., 21: 403-408.
  10. Figueredo, M.S., Tonelli, M.L., Taurian, T., Angelini, J., Ibañez, F., Valetti, L., Muñoz, V., Anzuay, M.S., Ludueña, L. and Fabra, A. (2014). Interrelationships between Bacillus sp. CHEP5 and Bradyrhizobium sp. SEMIA6144 in the induced systemic resistance against Sclerotium rolfsii and symbiosis on peanut plants. J. Biosci., 39 (5): 877-885.
  11. Galanihe, L.D., Priyantha, M.G.D.L., Yapa, D.R., Bandara, H.M.S. and Ranasinghe Jadar. (2004). Insect pest and disease incidences of exotic hybrids chilli pepper varieties grown in the low country dry zone of Sri Lanka. Ann. Sri Lanka, 6: 99-106.
  12. Gorbet, D.W. and Tillman, B.L. (2009). Registration of Florida 07 peanut. J. Plant Registrations, 3 :14-18.
  13. Herget, T., Schell, J. and Schreier, P.H. (1990). Elicitor-specific induction of one member of the chitinase gene family in Arachis hypogaea. Mol. Genet. Genomics, 224: 469-476.
  14. Jyosthna, M.K., Eswara Reddy, N.P., Chalam, T.V. and Reddy, G.L.K. (2004). Morphological and biochemical characterization of Phaeoisariopsis personata resistant and susceptible cultivars of groundnut (Arachis hypogaea). Plant Pathol. Bull., 13: 243-250.
  15. Kaur, J. and Dhillon, M. (1990). Biochemical alteration in groundnut leaves induced by Cercosporium personatum. Indian J. Mycol. Plant Pathol., 19: 151-156.
  16. Khaleifa, M.M.A., Azzam, C.R. and Azer, S.A. (2006). Biochemical markers associated with disease resistance to damping-off and root-rot diseases of peanut mutants and their productivity. Egyptian J. Phytopathol., 34 (2): 53-74.
  17. Liu, G., Greenshields, L.D., Sammynaiken, R., Hirji, N.R., Selvaraj, G. and Wei, Y. (2007). Targeted alterations in iron homeostasis underlie plant defense responses. J. Cell Sci., 120: 596-605.
  18. Lowry, O.W., Rosebrough, N.J., Farr, A.C. and Randall, R.J. (1951). Protein measurements with folin-phenol reagent. J. Biol. Chem., 193: 255-257.
  19. Ludueña, L.M., Taurian, T., Tonelli, M.L., Angelini, J.G., Anzuay, M.S., Valetti, L., Muñoz, V. and Fabra, A. (2012). Biocontrol bacterial communities associated with diseased peanut (Arachis hypogaea L.) plants. European J. Soil Biol., 53: 48-55.
  20. Malik, C.P. and Singh, S.P. (1980). Plant enzymology and histo-enzymology: A Text Manual. Kalyani Publishers, Ludhiana.
  21. Matteo, A.D., Bonivento, D., Tsernoglou, D., Federici, L. and Cervone, F. (2006). Polygalacturonase-inhibiting protein (PGIP) in plant defence: a structural view. Phytochemistry, 67: 528-533.
  22. Mullen, J. 2001. Southern blight, Southern stem blight, White mold. The Plant Health Instructor, DOI: 10.1094/PHI-I-2001-0104-01. 
  23. Nandini, D., Mohan, J.S.S. and Singh, G. (2010). Induction of systemic acquired resistance in Arachis hypogaea L. by Sclerotium rolfsii derived elicitors. J. Phytopathol., 158: 594-600.
  24.  
  25. Narendrakumar, Dagla, M.C., Ajay, B.C., Jadon, K.S. and Thirumalaisamy, P.P. (2013). Sclerotium stem rot: A threat to groundnut production. Popular Kheti, 1: 26-30.
  26. Oldenberg, K.R., Vo, K.T., Ruchland, B., Schatz, P.J. and Yuan, Z. (1996). A dual culture assay for detection of antimicrobial activity. J. Biomol. Screening, 1 (3): 123-130.
  27. Onofri, A. (2007). Routine statistical analysis of field experiments by using an excel extension. In: Proc. 6th Natl. Conf. Italian Biometric Soc.: La statisticanelle science della vita e dell anbi ante, Pisa. Pp. 93-96.
  28. Pande, S., Rao, J.N., Reddy, M.V. and McDonald, D. (1994). A technique to screen for resistance to stem rot caused by Sclerotium rolfsii in groundnut under greenhouse condition. Indian J. Plant Protec., 22 (2): 151-158.
  29. Papapostolou, I. and Georgiou, C.D. (2010). Hydrogen peroxide is involved in the sclerotial differentiation of filamentous phytopathogenic fungi. J. Appl. Microbiol., 109: 1929-1936.
  30. Prasad, K., Pooja, B-M., Waliyar, F. and Sharma, K.K. (2013). Overexpression of a chitinase gene in transgenic peanut confers enhanced resistance to major soil borne and foliar fungal pathogens. J. Plant Biochem. Biotechnol., 22 (2): 222-233.
  31. Pudjihartati, E., Ilyas, S. and Sudarsono. (2006). Oxidative burst, peroxidase activity, and lignin content of Sclerotium rolfsii infected peanut tissue. Hayati, 13 (4): 166-172.
  32. Punja, Z.K. (1985). Biology, ecology and control of Sclerotium rolfsii. Ann. Rev. Phytopathol., 23: 97-127.
  33. Punja, Z.K. and Zhang, Y-Y. (1993). Plant chitinases and their roles in resistance to fungal diseases. J. Nematol., 25 (4): 526-540.
  34. Reddy, M.N. and Sireesha, C.H. (2013). Role of oxidative enzymes and biochemical constituents in imparting resistance to groundnut (Arachis hypogaea L.) against stem rot disease caused by Sclerotium rolfsii. Bioresearch Bull., 036-041.
  35. Reissig, J.L., Strominger, J.L. and Leloir, L.F. (1955). A modified colorimetric method for the estimation of N-acetylamino sugars. J. Biol. Chem., 217: 959-966.
  36. Rohini, V.K. and Rao, K.S. (2001). Transformation of peanut (Arachis hypogaea L.) with tobacco chitinase gene: variable response of transformants to leaf spot disease. Plant Sci., 160: 889-898.
  37. Ryu, C-M., Farag, M.A., Paré, P.W. and Kloepper, J.W. (2005). Invisible signals from the underground: bacterial volatiles elicit plant growth promotion and induce systemic resistance. Plant Pathol. J., 21 (1): 7-12.
  38. Sadasivam, S. and Manickam, A. (1992). Biochemical methods for agricultural sciences. Wiley Eastern Limited, New Delhi.
  39. Saraswathi, M. and Reddy, M.N. (2012). Defence response triggered by Sclerotium rolfsii in groundnut (Arachis hypogaea L.) plants. Int. J. Curr. Res. Rev., 4 (21): 23-30.
  40. Shanmugam, P. and Narayanasamy, M. (2008). Optimization and production of salicylic acid by rhizobacterial strain Bacillus licheniformis MML2501. The Internet J. Microbiol., 6 (1).
  41. Shew, B.B., Wynne, J.C. and Beute, M,K. (1987). Field, microplot and greenhouse evaluation of resistance to Sclerotium rolfsii in groundnut. Plant Dis., 71: 188-192.
  42. Shew, B.B., Wynne, J.C. and Campbell, C.L. (1984). Spatial pattern of southern stem rot caused by Sclerotium rolfsii in six North Carolina groundnut fields. Phytopathol., 74: 730-735.
  43. Singh, A.K., Mehan, V.K. and Nigam, S.N. (1997). Stem and pod rots. In: Sources of resistance to groundnut fungal and bacterial diseases: an update and appraisal, Information Bulletin No. 50, ICRISAT, Hyderabad. Pp. 25-27.
  44. Thirumalaisamy, P.P., Narendrakumar, Radhakrishnan, T., Rathnakumar, A.L., Bera, S.K., Jadon, K.S., Mishra, G.P., Riddhi Rajyaguru and Binal Joshi. (2014). Phenotyping of groundnut genotypes for resistance to Sclerotium stem rot. J. Mycol. Plant Pathol., 44 (4): 459-462.
  45. Turner, J.T. and Backman, P.A. (1991). Factors relating to peanut yield increases after seed treatment with Bacillus subtilis. Plant Dis., 75 (4): 347-353.
  46. Uritani, L. (1971). Protein changes in diseased plants. Ann. Rev. Phytopath., 9: 211-234.
  47. Vidyasekaran, P. (2001). Physiology of disease resistance. In: principles of plant pathology. C.B.S. Publishers & Distributers, New Delhi. Pp. 106-116.
  48. Visca, P., Ciervo, A., Sanfilippo, V. and Orsi, N. (1993). Iron-regulated salicylate synthesis by Pseudomonas spp. J. Gen. Microbiol., 139: 1995-2001.
  49. Wang, X. and Liang, G. (2014). Control efficacy of an endophytic Bacillus amyloliquefaciens strain BZ6-1 against peanut bacterial wilt, Ralstonia solanacearum. BioMed Res. Int., DOI.org/10.1155/2014/465435.
  50. War, A.R., Paulraj, M.G., War, M.Y. and Ignacimuthu, S. (2011). Role of salicylic acid in induction of plant defense system in chickpea (Cicer arietinum L.). Plant Signaling Behav., 6 (11): 1787-1792.
  51. Yuan, J., Waseem, R., Shen, Q. and Huang, Q. (2012). Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp. cubense. Appl. Environ. Microbiol., 78 (16): 5942-5944

Editorial Board

View all (0)