Legume Research

  • Chief EditorJ. S. Sandhu

  • Print ISSN 0250-5371

  • Online ISSN 0976-0571

  • NAAS Rating 6.67

  • SJR 0.391

  • Impact Factor 0.8 (2023)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Legume Research, volume 39 issue 6 (december 2016) : 905-913

Abiotic stresses alter expression of S-Adenosylmethionine synthetase gene, polyamines and antioxidant activity in pigeon pea (Cajanus cajan L.)

Nidhi Radadiya1, Vipul B. Parekh1, Bhavika Dobariya1, Lalit Mahatma2, Mahesh K. Mahatma*1, 3
1<p>Department of Plant Molecular Biology &amp; Biotechnology,&nbsp;N.M. College of Agriculture, Navsari Agricultural University, Navsari-396 450, Gujarat, India.</p>
Cite article:- Radadiya1 Nidhi, Parekh1 B. Vipul, Dobariya1 Bhavika, Mahatma2 Lalit, Mahatma*1 K. Mahesh, 3 (2016). Abiotic stresses alter expression of S-Adenosylmethionine synthetase gene, polyamines and antioxidant activity in pigeon pea (Cajanus cajan L.) . Legume Research. 39(6): 905-913. doi: 10.18805/lr.v39i6.6640.

Expression of S-Adenosylmethionine synthetase (SAMS) gene in pigeon pea (Cajanus cajan L.) was analyzed by qRT PCR during abiotic stresses viz., drought, heavy metal (CdCl2) and cold.  Maximum expression of SAMS gene in the leaves were observed at 3 days after drought stress with 15% PEG. Conversely, its expression was not detected in leaves and roots at cadmium stress but transcripts were down regulated as compared to the control. After 6 days of stress expression of SAMS gene was increased in leaves and roots as compared to the control but it was lower than its expression at 3 days after stress. The activities of antioxidative enzymes like glutathione reductase, glutathione-s-transferase, ascorbate peroxidase and metabolite constituents like polyamines and glycine betaine were also analyzed. The activities of antioxidative enzymes and concentration of glycine betaine showed remarkable increase in response to all stresses, except ascorbate peroxidase in heavy metal stress.

  1. Ahmad, S., Ahmad, R., Ashraf, M., Ashraf, M. and Waraich, E. (2009). Sunflower (Helianthus annuus L.) response to drought stress at germination and seedling growth stages. Pak. J. Bot., 41: 647-654.

  2. Amooaghaie, R., (2011). Role of polyamines in the tolerance of soybean to water deficit stress. World Acad. of Sci. Eng. Technol., 56: 498-502.

  3. Bartling, D., Radzio, R., Steiner, U., Weiler, E.W. (1993). A glutathione S-transferase with glutathione-peroxidase activity from Arabidopsis thaliana. Molecular cloning and functional characterization. Eur. J. Biochem., 216 :579–86. 

  4. Boyland, E. and Chasseaud, L.F. (1969). The role of glutathione and glutathione-s-transferase in mercaptic acid biosynthesis. Adv. Enzymol. Relat. Areas Mol. Biol., 32: 173-219.

  5. Chen, T.H., Murata, N. (2008). Glycinebetaine: an effective protectant against abiotic stress in plants. Trends Plant Sci., 13:499–505. 

  6. Chinnusamy, V., Zhu J.K. and Sunkar, R. (2010). Gene regulation during cold stress acclimation in plants. Method Mol. Biol. 639: 39–55.

  7. Choudhary, A.K. Sultana, R. Pratap, A. Nadarajan, N. and Jha U.C. (2011). Breeding for abiotic stresses in pigeonpea. J. Fd. Legume., 24: 165-174.

  8. Colville, L. and Kranner, I. (2010). Desiccation tolerant plants as model systems to study redox regulation of protein thiols. Plant Growth Regul. 62: 241–255.

  9. Cummins, I., Cole, D.J., Edwards, R. (1999) A role for glutathione transferases functioning as glutathione peroxidases in resistance to multiple herbicides in black-grass. Plant J., 18:285–92. 

  10. Dixit, V., Pandey, V. and Shyam, R. (2001). Differential antioxidative responses to cadmium in roots and leaves of pea. J. Exp. Bot., 52: 1101-1109.

  11. Dixon, D.P., Lapthorn, A. and Edwards, R. (2002). Plant glutathione transferases. Genome Biol. 3: reviews3004.3001-    reviews3004.3010.

  12. Dussault, A. and Pouliot, M. (2006). Rapid and simple comparison of messenger RNA levels using real-time PCR. Biol. Proced. Online 8: 1–10.

  13. Gamarnik, A. and Frydman, R. B. (1991). Cadaverine, an essential diamine for the normal root development of germinating soybean (Glycine max) seeds. Plant Physiol. 97: 778-785.

  14. Gao, J., Ling Sun, Yang, X. and Liu, J. (2013). Transcriptomic analysis of cadmium stress response in the heavy metal hyper accumulator Sedum alfredii Hance. PLoS ONE., 8: e64643. doi:10.1371/journal.pone.0064643

  15. Gill, S.S. and Tuteja N. (2010). Polyamines and abiotic stress tolerance in plants. Plant Signal Behav., 5: 26-33.

  16. Giri, J. (2011). Glycinebetaine and abiotic stress tolerance in plants. Plant Signal Behav., 6: 1746–1751.

  17. Grieve, C.M. and Grattan, S.R., (1983). Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil., 70: 303-307.

  18. Groppa, M.D., Ianuzzo, M.P., Tomaro, M.L. and Benavides, M.P. (2007). Polyamine metabolism in sunflower plants under long-term cadmium or copper stress. Amino Acids, 32: 265-275.

  19. Guo, Z., Tan, J., Zhuo, C., Wang, C., Xiang, B. and Wang, Z. (2014) Abscisic acid, H2O2 and nitric oxide interactions mediated cold-induced S-adenosylmethionine synthetase in Medicago sativa subsp. falcata that confers cold tolerance through up-regulating polyamine oxidation. Plant Biotechnol. J. 12: 601- 612.

  20. Jones, W. (1984). Phytochemical aspects of osmotic adaptation. Rec. Adv. Phytochem., 18: 55-78.

  21. Kaydan, D. and Yagmur, M. (2008). Germination, seedling growth and relative water content of shoot in different seed sizes of triticale under osmotic stress of water and NaCl. Afr. J. Biotech., 7: 2862-2868.

  22. Kim, S.H., Kim, S.H., Palaniyandi, S.A., Yang, S.H. and Suh, J.W. (2015). Expression of potato S-adenosyl-l-methionine synthase (SbSAMS) gene altered developmental characteristics and stress responses in transgenic Arabidopsis plants. Plant Physiol. Biochem., 87: 84–91.

  23. Krishnamurthy, A. and Rathinasabapathi, B. (2013). Oxidative stress tolerance in plants: Novel interplay between auxin and reactive oxygen species signaling. Plant Signal Behav. 8: e25761.

  24. Lowry, O.H., Rosbrough, N.J., Farr, A.L. and Randall, R.J. (1951). Protein measurement with the folin phenol reagent. J. Biol. Chem., 193: 265-275.

  25. Madamanchi, N.R., Anderson, J.V., Alscher, R.G., Cramer, C.L. and Hess J.L. (1992). Purification of multiple forms of glutathione reductase from pea (Pisum sativum L.) seedlings and enzyme levels in ozone-fumigated pea leaves. Plant Physiol., 100: 138-145.

  26. Mahatma, M.K., Bhatnagar, R., Solanki, R.K. and Mittal, G.K. (2009). Effect of seed soaking treatments on salinity induced antioxidant enzymes activity, lipid peroxidation and free amino acid content in wheat (Triticum aestivum L.) leaves. Indian J. Agril. Biochem., 22:108-112.

  27. Mhaske, S. D., Mahatma, M. K., Jha, S., Singh, P. and Ahmad, T. (2013). Polyamine metabolism and lipoxygenase activity during Fusarium oxysporum f. sp. ricini -castor interaction. Physiol. Mol. Biol. Plants., 19: 323–331.

  28. Mohammadian, M.A., Largani, Z.K. and Sajedi, R.H. (2012). Quantitative and qualitative comparison of antioxidant activity in the flavedo tissue of three cultivars of citrus fruit under cold stress. AJCS., 6: 402-406.

  29. Nayyar, H. and Chander, S. (2004). Protective effects of polyamines against oxidative stress induced by water and cold stress in chickpea. J. Agron. Crop. Sci., 190: 355-365.

  30. Nikolic, N., Kojic, D., Pilipovic, A., Pajevic, S., Krstic, B., Borisev, M. and Orlovic, S. (2008). Responses of hybrid poplar to cadmium stress: photosynthetic characteristics, cadmium and proline accumulation, and antioxidant enzyme activity. Acta. Biol. Cracov. Bot., 50: 95-103.

  31. Pandit, R.J., Patel, B., Kunjadia, P.D. and Nagee, A. (2013). Isolation, characterization and molecular identification of heavy metal resistant bacteria from industrial effluents, Amala-khadi- Ankleshwar, Gujarat. Int. J. Environ. Sci., 3: 1689-1699.

  32. Patil, H.E. Mahatma, M.K., Patel, N.J., Bhatnagar, R., Jadeja, G.C., (2005). Differential response of pearlmillet [Pennisetum glaucum (L.)R. Br] hybrids to water stress in relation to anti-oxidant enzymes activity and proline. Indian J. Plant Physiol., 10: 344-348.

  33. Petchiammal K. I., Muthiah, A.R., Jayamani, P., (2015) Molecular characterization of cultivated and wild Cajanus species using Simple Sequence Repeat markers. Legume Res., 38: 742-747.

  34. Polle, A. and Rennenberg, H. (1994). Photooxidative stress in trees. In: causes of photooxidative stress and amelioration of defense systems in plants (eds. C.H. Foyer and P.M. Mullineaux) .CRC, Boca Raton, FL. 199-218. 

  35. Prabhavathi, V.R. and Rajam, M.V. (2007). Polyamine accumulation in transgenic eggplant enhances tolerance to multiple abiotic stresses and fungal resistance. Plant Biotechnol., 24: 273-282.

  36. Pulla, R., Kim, Y., Parvin, S., Shim, J., Lee, J., Kim,Y., In, J., Senthil, K. and Yang, D. (2009). Isolation of S-adenosyl-L-    methionine synthetase gene from Panax ginseng C.A. meyer and analysis of its response to abiotic stresses. Physiol. Mol. Biol. Plants., 15: 267-275.

  37. Rao, M.K.V. and Sresty, T.V., (2000). Antioxidative parameters in the seedlings of pigeonpea [Cajanus cajan(L.) Millspaugh] in response to Zn and Ni stresses. Plant Sci., 157: 113-128.

  38. Rider, J.E., Hacker, A., Mackintosh, C.A., Pegg, A.E., Woster, P.M. and Casero, R.A., (2007). Spermine and spermidinemediate protection against oxidative damage caused by hydrogen peroxide. Amino Acids, 33: 231- 240.

  39. Roxas, V.P., Lodhi, S.A., Garrett, D.K., Mahan, J.R., Allen, R.D. (2000) Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. Plant Cell Physiol., 41:1229–34. 

  40. Sarwar, M.K., Ullah, I., Urrahman, M., Ashraf, M. and Zafar, Y. (2006). Glycinebetaine accumulation and its relation to yield and yield components in cotton genotypes grown under water deficit condition. Pak. J. Bot., 38: 1449-1456.

  41. Sharma, P and Dubey, R. S. (2005) Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regul. 46: 209–221.

  42. Singh, J., Kumar, A. and Fiyaz, A.R. (2015). Diversity and stability analysis for yield and component traits in Cajanus cajan under rainfed conditions. Legume Res., 38: 169-173.

  43. Smith, I. K., Vierheller, T.L. and Thorne, C.A. (1988). Assay of glutathione reductase in crude tissue homogenates using 5,52 -dithiobis (2-nitrobenzoic acid). Anal. Biochem., 175: 408-413.

  44. Tong ,S., Ni, Z., Peng, H., Dong, G. and Sun, Q. ( 2007). Ectopic overexpression of wheat TaSrg6 gene confers water stress tolerance in Arabidopsis. Plant Sci. 172: 1079–1086.

  45. Wang, C.Y. (1994). Temperature preconditioning affects glutathione content and glutathione reductase activity in chilled Zucchini Squash. J. Plant Physiol., 145: 148-152.

  46. Wang, Y., Wisniewski, M., Meilan, R., Cui, M., Webb, R. and Fuchigami, L. (2005). Overexpression of cytosolic ascorbateperoxidise in tomato confers tolerance to chilling and salt stress. J. Amer. Soc. Hort. Sci., 130: 167-173.

  47. Zagorchev, L., Seal, C.E., Kranner, I. and Odjakova, M. (2013). A central role for thiols in plant tolerance to abiotic stress. Int. J. Mol. Sci., 14: 7405-7432.


Editorial Board

View all (0)