Legume Research

  • Chief EditorJ. S. Sandhu

  • Print ISSN 0250-5371

  • Online ISSN 0976-0571

  • NAAS Rating 6.80

  • SJR 0.391

  • Impact Factor 0.8 (2024)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Legume Research, volume 40 issue 4 (august 2017) : 635-638

Stability by additive main multiplicative interaction (AMMI) model & genetic diversity studies in micro and macro-sperma Lentil (Lens culinaris L.) in mid hills of Jammu and Kashmir, India

Sanjeev Kumar, Praveen Singh
1<p>Krishi Vigyan Kendra Poonch, S. K. University of Agricultural Sciences and Technology, Jammu-185 101, India.</p>
Cite article:- Kumar Sanjeev, Singh Praveen (2017). Stability by additive main multiplicative interaction (AMMI) model &amp; genetic diversity studies in micro and macro-sperma Lentil (Lens culinaris L.)in mid hills of Jammu and Kashmir, India . Legume Research. 40(4): 635-638. doi: 10.18805/lr.v0i0.7595.

The present investigation was aimed at ascertaining the nature and magnitude of genetic diversity among a set of 12 lentil genotypes through Mahalanobis D2 Method. The genotypes under study fall into four clusters. The cluster-I contained the highest number of genotypes (05) followed by cluster-III (03) and Cluster-II and IV each contained the lowest (02). Cluster-II produced the highest mean value for days to maturity and cluster-I exhibited minimum mean value for pod length (0.64). The inter-cluster distances were much higher than the intra-cluster distances. Members of cluster -III and IV were highly diverse from each other as these clusters showed maximum inter-cluster distance. Cluster-IV exhibited the highest intra-cluster distance while the lowest distance was observed in cluster-I. The highest inter-cluster distance was observed between cluster-III and IV while the lowest was between cluster-I and III. The trait pod length (33.33%) contributed maximum for genetic diversity followed by seed yield /plant (27.27%), 100 seed weight (21.21%) and days to maturity (10.61%). Therefore these characters contributed maximum for getting the genetic diversity.


  1. Anonymous (2012). Food and Agricultural Organization, Statistical Databases, www.fao.org.

  2. Chowdhary, M. A., Vanderberg, V. and Warkentin, T. (2002). Cultivar identification and genetic relationship among selected         breeding lines and cultivars in chickpea (Cicer arietinum L.). Euphytica 172: 317-325.

  3. FAOSTAT (2010). Data stat year 2010. Food Agriculture Organization (http//faostat.fao.org) verified 2 August, 2012. Rome, Italy.

  4. Gafoor, A., Ahmad, Z., Afzal, M. and Qureshi, M. S. (2003). Influence of genetic diversity and combining ability in         determining of hybrid vigour in Vigna mungo. Journal of Genet. and Breed., 54:125-131.

  5. Hadad, N. I., Boggo, T. P., and Muchibauer, F. J. (2004). Genetic variation of six agronomic characters in three lentil         crosses. Euphytica 31:113-120.

  6. Iqba, M.S., Qureshi, A. S., Ghafoor, A. Q. (2003). Identification of superior genotypes based on morphological, physiological         and agronomic traits in local and exotic germplasm of cowpea. Pakistan J.  Bot. 35: 69-77. 

  7. Jeena, A. S. and Singh, I.S. (2002). Genetic divergence analysis in wild lentils. Legume Res. 25:175-179.

  8. Joshi, P. K. (2009). “Prices and Market Intervention in Pulses”, Brain-storming workshop on Issues and Strategies for         Increasing Productivity and Production of Pulses in India, Indian Council of Agricultural Research and Ministry         of Agriculture, Government of India, New Delhi, 9-10 June.

  9. Lal, D., Krishna, R. and Gurpreet, S. (2001). Genetic divergence in chickpea. Ind. J. Pulses Res. 14: 63-64.

  10. Mahalanobis, P. C. (1936). On the generalized distance in statistics. Proc. Nat. Inst. Sci. India 2: 49-55

  11. Rao, C. R. (1952). Advanced Statistical Methods in Biometrical Research. John Wiley and Sons, New York. pp 45-110.

  12. Sihag, R., Hooda, J. S., Vashishta, R. D., and Malik B. P. S., (2004).  Genetic divergence in Soybean. Annals of Biol.,         20:17-21.

  13. Singh, R. K. and Chaudhary, B. P. (1985). Biometrical methods of quantitative genetic analysis. Haryana J. Hort. Sci., 12 : 151-156.

  14. Sirohi, S.P.S. and Dar, A. N. (2009). Genetic divergence in soybean. SKUAST J. of Res., 11: 201-203.

  15. Sirohi, S. P. S., Yadav, R. and Meenakshi, S. (2007). Assaying genetic divergence for mor-physiological traits in Lentil.         Plant Arch., 7: 331-33.

  16. Solanki, I. S. (2007). Genetic divergence in Lentil. Nat. J. Pl. Improv., 9:123-125.

  17. Subhashchandra, B., Lohithaswa, H. C., Desai, S.A.,  Hanchinal, R. R., Kalappanavar, I. K., Math, K. K. and  Salimath, P.         M. (2009). Assessment of genetic variability and relationship between genetic diversity and transgressive segregation         in tetraploid wheat. Karnatak J. Agric. Sci., 22: 36-38.

     

Editorial Board

View all (0)