Legume Research

  • Chief EditorJ. S. Sandhu

  • Print ISSN 0250-5371

  • Online ISSN 0976-0571

  • NAAS Rating 6.80

  • SJR 0.391

  • Impact Factor 0.8 (2024)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Legume Research, volume 40 issue 3 (june 2017) : 453-461

Mitigating effects of paclobutrazol on flooding stress damage by shifting biochemical and antioxidant defense mechanisms in mungbean (Vigna radiata L.) at pre-flowering stage

Dinesh Kumar Yadav*, A. Hemantaranjan
1<p>Department of Plant Physiology, Institute of Agricultural Sciences,&nbsp;Banaras Hindu University, Varanasi&ndash;221 005, India.</p>
Cite article:- Yadav* Kumar Dinesh, Hemantaranjan A. (2017). Mitigating effects of paclobutrazol on flooding stress damage by shifting biochemical and antioxidant defense mechanisms in mungbean(Vigna radiata L.) at pre-flowering stage . Legume Research. 40(3): 453-461. doi: 10.18805/lr.v0i0.7593.

Flooding stress is one of the major obstacles which hamper plant growth and development in various ways. Two screened mungbean genotypes, HUM-16 (flooding tolerant) and HUM-12 (flooding susceptible), were selected to evaluate the effect of paclobutrazol @10ppm and 25ppm along with its combinations through pre-seed soaking and foliar spray at pre-flowering stage. The flooding stress shock was imposed for seven days at pre-flowering stage. Paclobutrazol (PBZ) treatments significantly enhanced chlorophyll, soluble sugar, starch, MSI, APX, and SOD in both HUM-16 and HUM-12 genotypes under flooding stress. Among all the treatments, PBZ @10ppm seed treatment + 10ppm foliar spray revealed higher chlorophyll (2.47 and 1.97 mg g-1 FW), soluble sugar (24.57 and 20.53 mg g-1 FW), MSI (49.16% and 38.67%), APX (16.13 and 6.50 Units mg-1 protein min-1) and SOD (38.00 and 18.30 Units mg-1 protein min-1) in both tolerant and susceptible genotype, respectively, while it minimized the production of MDA (18.30% and 49.00%) and H2O2 (19.05% and 25.06%) in both tolerant and susceptible genotype, respectively, under flooding stress as compared to control. Paclobutrazol treatments, as evident, minimized the flooding stress damage in tolerant genotype as compared to susceptible genotype by enhancing chlorophyll, soluble sugar and antioxidant enzymes activity (APX and SOD) and by reducing the generation of H2O2 and MDA contents under flooding stress.


  1. Abolfazl, L., Mobasheri, S., Bemana, R., Teymori, N. (2013). Role of paclobutrazol on vegetative and sexual growth of plants. Int. J. Agri. Crop Sci. 5: 958–961. 

  2. Alam, I., Lee, D., Kim, K., Park, C., Sharmin, S.A., Lee, H., Oh, K., Yun, B. and Lee, B. (2010). Proteome analysis of soybean roots under waterlogging stress at an early vegetative stage. J. Biol. Sci. 35: 49–62. 

  3. Asada, K. (1999). The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Ann. Rev. Plant Physiol., Plant Mol. Biol. 50: 601–639. 

  4. Bailey-Serres, J., Fukao, T., Ronald, P., Ismail, A., Heuer, S. and Mackill, D. (2010). Submergence tolerant rice: SUB1’s journey from landrace to modern cultivar. Rice. 3: 138–147. 

  5. Bansal, R. and Srivastava, J.P. (2012). Antioxidative defense system in pigeonpea roots under waterlogging stress. Acta Physiol. Plant. 34: 515–522. 

  6. Banti, V., Beatrice, G., Silvia, G., Elena, L., Leonardo, M., Giacomo, N., Eleonora, P., Sandro, P., Chiara, P., Antonietta, S. and Pierdomenico, P. (2013). Low oxygen response mechanisms in green organisms. Int. J. Mol. Sci. 14: 4734–    4761. 

  7. Berova, M. and Zlatev, Z. (2000). Physiological response and yield of paclobutrazol treated tomato plants (Lycopersicon esculentu Mill.). Plant Growth Regul. 30: 117–123. 

  8. Berova, M. and Zlatev, Z. (2003). Physiological response of paclobutrazol treated triticale plants to water stress. Biol. Planta. 46: 133–136. 

  9. Blokhina, O.B., Chirkova, T.V. and Fagerstedt, K.V. (2001). Anoxic stress leads to hydrogen peroxide formation in plant cells. J. Exp. Bot. 52: 1179–1190. 

  10. Cekic, C. and Paulsen, G.M. (2001). Evaluation of a ninhydrin procedure for measuring membrane thermostability of wheat. Crop Sci. 41: 1351–1355. 

  11. Choudhury, S., Panda, P., Sahoo, L. and Panda, S.K. (2013). Reactive oxygen species signaling in plants under abiotic stress. Plant Signal. Behav. 8: 23681. 

  12. Dat, J., Capell, N., Folzer, H., Bourgeade, P. and Badot, P.M. (2004). Sensing and signaling during plant flooding. Plant Physiol. Biochem. 42: 273–282.

  13. Dhindsa, R.S., Plumb-Dhindsa, P. and Thorpe, T.A. (1981). Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 32: 93–101. 

  14. Dubois, M., Gilles, K.A., Hamilton, J.K. and Smith, F. (1956). Colorimetric method of determination of sugar and related substance. Anal. Chem. 28: 350–356. 

  15. Elanchezhian, R., Haris, A.A., Kumar, S. and Singh, S.S. (2015). Positive impact of paclobutrazol on gas exchange, chlorophyll fluorescence and yield parameters under submergence stress in rice. Indian J. Plant Physiol. 20: 06.

  16. Gomez, K.A. and Gomez, A.A. (1984). Statistical Procedures for Agricultural Research. A. Willy- Inter sci. Pub. New York.

  17. Hattori, Y., Nagai, K. and Ashikari, M. (2011). Rice growth adapting to deepwater. Curr. Opi. Plant Biol. 14: 100–105.

  18. Hodges, D.M., De-Long, J.M., Forney, C.F. and Prange, R.K. (1999). Improving the thiobarbituric acid reactive substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta. 207: 604–611. 

  19. Irfan, M., Hayat, S., Hayat, Q., Afroz, S. and Ahmad, A. (2010). Physiological and biochemical changes in plants under waterlogging. Protopl. 241: 3–17. 

  20. Jain, M., Mathur, G., Koul, S. and Sarin, N.B. (2001). Ameliorative effects of proline on salt stress induced lipid peroxidation in cell lines of groundnut (Arachis hypogea L.). Plant Cell Rep. 20: 463–468. 

  21. Jaleel, C.A., Gopi, R., Manivannan, P. and Panneerselvam, R. (2007). Responses of antioxidant defense system of Catharanthus roseus (L.) G. Don. to paclobutrazol treatment under salinity. Acta Physiol. Plant, 29: 205–209. 

  22. Kanti, K.B., Ganesh, R. and Mathur, S.R. (2007). Paclobutrazol delayed dark induced senescence of mungbean leaves. Biol. Bratisl. 62: 185–188.

  23. Kaplan, F. and Guy, C.L. (2004). b-amylase induction and the protective role of maltose during temperature shock. Plant Physiol. 135: 1674–1684. 

  24. Kulkarni, S.S. and Chavan, P.D. (2013). Influence of waterlogging on carbohydrate metabolism in ragi and rice roots. J. Stress Physiol. Biochem. 9: 199–205. 

  25. Kumar, P., Madan, P., Rohit, J. and Sairam, R.K. (2013). Yield, growth and physiological responses of mungbean [Vigna radiata (L.) Wilczek] genotypes to waterlogging at vegetative stage. Physiol. Mol. Biol. Plants. 19: 209–220. 

  26. Kumutha, D., Ezhilmathi, K., Sairam, R.K., Srivastava, G.C., Deshmukh, P.S. and Meena, R.C. (2009). Waterlogging induced oxidative stress and antioxidant activity in pigeon pea genotypes. Biol. Plant. 53: 75–84. 

  27. Lin, K.H., Weng, C.C., Loa , H.F. and Chen, J.T. (2004). Study of the root antioxidative system of tomatoes and eggplants under waterlogged conditions. Plant Sci. 167: 355–365.

  28. Mensah, J.K., Obadoni, B.O., Eruotor, P.G. and Onome-Irieguna, F. (2006). Simulated flooding and drought effects on germination, growth, and yield parameters of sesame (Sesamumu indicum L.). Afri. J. Biotech. 5: 1249–1253. 

  29. Mukherjee, S.P. and Choudhari, M.A. (1983). Implications of water stress induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol. Planta. 58: 116–170.

  30. Nakano, Y. and Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22: 867–880. 

  31. Pan, S., Fahd, R., Wu, L., Hua, T., Zhaowen, M., Meiyang, D. and Xiangru, T. (2013). Roles of plant growth regulators on yield, grain qualities and antioxidant enzyme activities in super hybrid rice (Oryza sativa L.). Rice. 6: 9. 

  32. Prasad, S., Ram, P.C. and Uma, S. (2004). Effect of waterlogging duration on chlorophyll content, nitrate reductase activity, soluble sugars and grain yield of maize. Ann. Plant Physiol. 18: 1–5. 

  33. Rawyler, A., Arpagaus, S. and Braendle, R. (2002). Impact of oxygen stress and energy availability on membrane stability of plant cells. Ann. Bot. 90: 499–507. 

  34. Sairam, R.K. and Srivastava, G.C. (2002). Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Sci. 162: 897–904. 

  35. Sairam, R.K., Dharmar, K., Chinnusamy, V. and Meena, R.C. (2009). Waterlogging induced increase in sugar mobilization, fermentation, and related gene expression in the roots of mungbean (Vigna radiata L.). J. Plant Physiol. 166: 602–616. 

  36. Sairam, R.K., Kumutha, D., Ezhilmathi, K., Deshmukh, P.S. and Srivastava, G.C. (2008). Physiology and biochemistry of waterlogging tolerance in plants. Biol. Plant. 52: 401–412.

  37. Simova-Stoilova L., Demirevska, K., Kingston-Smith, A. and Feller, U. (2012). Involvement of the leaf antioxidant system in the response to soil flooding in two Trifolium genotypes differing in their tolerance to waterlogging. Plant Sci. 183: 43–49.

  38. Singh, D.P. and Singh, B.B. (2011). Breeding for tolerance to abiotic stresses in mungbean. J. Food Leg. 24: 83–90. 

  39. Singh, V.P. (2010). Physiological and biochemical changes in pigeonpea [Cajanus cajan (L.) Millsp.] genotypes to waterlogging stress at early stage. Ph.D. Thesis, Banaras Hindu University. 

  40. Tan, S., Zhu, M. and Zhang, Q. (2010). Physiological responses of bermudagrass (Cynodon dactylon) to submergence. Acta Physiol. Plant. 32: 133–140. 

  41. Tang, B., Xu, S., Zou, X., Zheng, Y. and Qiu, F. (2010). Changes of antioxidative enzymes and lipid peroxidation in leaves and roots of waterlogging tolerant and waterlogging sensitive maize genotypes at seedling stage. Agri. Sci. China. 9: 651–661. 

  42. Voesenek, L.A.C.I., Benschop, J.J., Bou, J., Cox, M.C.H., Vreeburg, R.A.M. and Peeters, A.J. M. (2003). Interactions between plant hormones regulate submergence-induced shoot elongation in the flooding tolerant dicot Rumex palustris. Ann. Bot. 91: 205–11. 

  43. Yordanova, R.Y., Alexieva, V.S. and Popova, L.P. (2003). Influence of root oxygen deficiency on photosynthesis and antioxidants in barley plants. Russ. J. Plant Physiol. 50: 163–167. 

  44. Yoshida, S., Forno, D.A.J., Cock, H. and Gomez, K.A. (1972). Determination of chlorophyll in plant tissue. In: Laboratory manual for physiological studies of rice. Inter. Rice Res. Ins. Phillipines. 

  45. Zaidi, P.H., Rafique, S. and Singh, N.N. (2003). Response of maize (Zea mays L.) genotypes to excess moisture stress: Morpho-physiological effects and basis of tolerance. Eur. J. Agron. 19: 383–399. 

Editorial Board

View all (0)