Legume Research

  • Chief EditorJ. S. Sandhu

  • Print ISSN 0250-5371

  • Online ISSN 0976-0571

  • NAAS Rating 6.67

  • SJR .391

  • Impact Factor .669 (2022)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Legume Research, volume 40 issue 3 (june 2017) : 462-469

Galactomannan content and key enzymes of its metabolism in seeds of cluster bean [Cyamopsis tetragonoloba (L.) Taub.]

Neha Wadhwa*, Udai Narayan Joshi
1<p>Department of Chemistry and Biochemistry,&nbsp;Chaudhary Charan Singh Haryana Agricultural University, Hisar-125 004, India.&nbsp;</p>
Cite article:- Wadhwa* Neha, Joshi Narayan Udai (2016). Galactomannan content and key enzymes of its metabolism in seedsof cluster bean [Cyamopsis tetragonoloba (L.) Taub.] . Legume Research. 40(3): 462-469. doi: 10.18805/lr.v0iOF.10758.

The present investigation was carried out to estimate galactomannan content in mature seeds of 17 guar genotypes and activity of enzymes involved in galactomannan metabolism. Galactomannan content was found in the range of 16.82 (in IC 310630) to 36.68 per cent (in HG 3-2). The developing pods were sampled at 25, 32, 39 and 46 days after flowering (DAF) for a-galactosyltransferase, ß-D-mannosidase & ß-1, 4-mannanase assay. The mean a-galactosyltransferase specific activity increased from 25 to 39 DAF (1557 to 3093 units) followed by decrease at 46 DAF (1484 units). The mean specific activity increased from 392 to 3166 units with the increase in galactomannan content from 16.82 to 36.68 per cent. Thus, this enzyme showed highly positive correlation with the galactomannan content. The mean specific activity of  ß-D-mannosidase increased gradually from 25 to 39 DAF (67 to 138 units) followed by sharp decrease at 46 DAF (32 units). The mean specific activity of  ß-1, 4-mannanase was found maximum at 25 DAF (102 units) and afterwards, it decreased continuously with advancement of days after flowering up to 46 days (9 units). On the whole, it can be said that the ß-D-mannosidase requires prior activity of  ß-1, 4-mannanase for galactomannan catabolism while a-galactosyltransferase activity is positively correlated with galactomannan content and play a major role in guar gum synthesis and can be further used for gum improvement via genetic manipulation.

  1. Das, B., Arora, S. K. and Luthra, Y. P. (1977). A rapid method for determination of gum in guar (Cyamopsis tetragonoloba (L.) Taub.). In: Proc. First ICAR Guar Res. Workshop. CAZRI, Jodhpur. pp: 117-123.

  2. Das, D., Ara, T., Dutta, S. and Mukherjee, A. (2011). New water resistant biomaterial biocide film based on guar gum. Bioresour. Tech. 102: 5878-5883.

  3. Deng, C. and Chen, R. R. (2004). A pH-sensitive assay for galactosyltransferase. Anal. Biochem. 330: 219-226. 

  4. Dhawan, S. and Kaur, J. (2007). Microbial mannanases: an overview of production and applications. Crit. Rev. Biotechnol. 27: 197-216.

  5. Dhugga, K. S., Barreiro, R., Whitten, B., Stecca, K., Hazebroek, J., Randhawa, G. S., Dolan, M., Kinney, A. J., Tomes, D., Nichols, S. and Anderson, P. (2004). Guar seed ß-mannan synthase is a member of the cellulose synthase super gene family. Sci. 303:363-366.

  6. Dubois, M., Gilles, K. A., Hamilton, J. J., Rubress, P. A. and Smith, F. (1956). Colorimetric method for determination of sugar and related substances. Anal. Chem. 28:350-356.

  7. Dwivedi, N. K., Bhandari, D. C., Dubas, B. S., Agrawal, R. C., Mandal, S. and Rana, R. S. (1995). Catalogue on clusterbean (Cyamopsis tetragonoloba (L.) Taub.) germplasm, part III NBPGR, New Delhi.

  8. Edwards, M. E., Dickson, C. A., Chengappa, S., Sidebottom, C., Gidley, M. J. and Reid, J. S. G. (1999). Molecular characterisation of a membrane bound galactosyltransferase of plant cell wall matrix polysaccharide biosynthesis. Plant. J. 19:691-697.

  9. Edwards, M. E., Marshall, E., Gidley, M. J. and Reid, J. S. G. (2002). Transfer Specificity of Detergent-Solubilized Fenugreek Galactomannan Galactosyltransferase. Plant Physiol. 129: 1391-1397.

  10. Edwards, M. E., Scott, C., Gidley, M. J. and Reid, J. S. G. (1992). Control of mannose/galactose ratio during galactomannan formation in developing legume seeds. Planta. 187: 67-74.

  11. Joshi, U. N. (2004). Advances in Chemistry, Biochemistry and Industrial Utilization of Guar Seed. In: Guar. (J.V. Singh and B.S. Dahiya eds.), Indian Society of Forage Research, Hisar and Agricultural and Processed Food Products Export Development Authority (APEDA), New Delhi, India. pp: 197-229.

  12. Kanamasa, S., Takada, G., Kawaguchi, T., Sumitani, J. and Arai, M. (2001). Overexpression and purification of Aspergillus aculeatus ß-mannosidase and analysis of the integrated gene in Aspergillus oryzae. J. Biosci. Bioengg. 92: 131-137.

  13. Kestwal, R. M. and Bhide, S. V. (2005). Purification and partial characterization of a-D-mannosidase from Erythrina indica seeds. Ind. J. Biochem. Biophy. 42: 156-160.

  14. Lee, B. T. and Matheson, N. K. (1984). Phosphomannoisomerase and phosphoglucoisomerase in seeds of Cassia coluteoides and some other legumes that synthesize galactomannan. Phytochem. 23:983-987.

  15. Lowry, D. H., Rosebrough, N. J., Farr, A. L. and Randall, J. L. (1951). Protein measurement with Folin-phenol reagent. Biol. Chem. 193:265-275.

  16. McCleary, B.V. and Matheson, N. K. (1975). Galactomannan structure and ß-mannanase and ß-mannosidase activity in germinating legume seeds. Phytochem. 14: 1187-1194.

  17. Moreira, L. R. and Filho, E. X. (2008). An overview of mannan structure and mannan-degrading enzyme systems. Appl. Microbiol. Biotechnol. 79: 165-178.

  18. Naoumkina, M., Torres-Jerez, I., Allen, S., He, J., Zhao, P. X., Dixon, R. A. and May, G. D. (2007). Analysis of cDNA libraries from developing seeds of guar [Cyamopsis tetragonoloba (L.) Taub.]. BMC Plant Biol. 7: 62-73. 

  19. Nelson, N. (1944). A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem.153:375-381.

  20. Pauly, M. and Keegstra, K. (2008) Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J. 54: 559-568.

  21. Pre, M., Caillet, V., Sobilo, J. and McCarthy, J. (2008). Characterization and expression analysis of genes directing galactomannan synthesis in coffee. Ann. Bot. 102: 207-220.

  22. Punia, A., Arora, P., Yadav, R. and Chaudhary, A. (2009). Optimization and inference of PCR conditions for genetic variability studies of commercially important clusterbean varieties by RAPD analysis. Asia Pac. J. Mol. Biol. Biotechnol. 17: 33-38.

  23. Redgwell, R. J., Curti, D., Rogers, J., Nicolas, P. and Fischer, M. (2003). Changes to the galactose / mannose ratio in galactomannans during coffee bean (Coffea arabica L.) development: implications for in vivo modification of galactomannan synthesis. Planta. 217: 316-326.

  24. Reese, E. T. and Shibata, Y. (1965). ß-mannanases of fungi. Can. J. Microbiol. 11: 167-183.

  25. Reid, J. S. G. and Meier, H. (1973). Enzymic activities and galactomannan mobilisation in germinating seeds of fenugreek (Trigonella foenum-graecum L. Leguminosae): Secretion of a-galactosidase and b-mannosidase by the aleurone layer. Planta. 112: 301-308.

  26. Reid, J. S. G., Edwards, M. E., Dickson, C. A., Scott, C. and Gidley, M. J. (2003). Tobacco transgenic lines that express fenugreek galactomannan galactosyltransferase constitutively have structurally altered galactomannans in their seed endosperm cell walls. Plant Physiol. 131:1487-1495.

  27. Sheoran, O.P. Statistical Analysis Software at the site of CCSHAU. www.hau.ernet.in.

  28. Shimahara, H., Suzuki, H., Sugiyama, N. and Nisizawa, K. (1975). Partial purification of beta-mannanase from the konjac tubers and their substrate specificity in relation to the structure of konjac glucomannan. Agric. Biol. Chem. 39:301-312.

  29. Somogyi, N. (1945). A new reagent for determination of sugars. J.Biol.Chem. 160:61-69.

  30. Sturm, A. and Tang, G. Q. (1999). The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends Plant Sci. 4: 401-407.


Editorial Board

View all (0)