Genetic diversity studies of alfalfa germplasm (Medicago sativa L. subsp. sativa) of United States origin using microsatellite analysis

DOI: 10.18805/LR-358    | Article Id: LR-358 | Page : 202-207
Citation :- Genetic diversity studies of alfalfa germplasm (Medicago sativa L. subsp. sativa) of United States origin using microsatellite analysis.Legume Research-An International Journal.2018.(41):202-207
Shuying Yin, Yanrong Wang and Zhibiao Nan
Address : State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, 768 Jiayuguan West Road, Lanzhou 730020, China.
Submitted Date : 30-03-2017
Accepted Date : 15-09-2017


This study aimed to understand the genetic diversity and population structure of alfalfa germplasm from the United States. In this study, the population structure and genetic diversity of six alfalfa cultivars of United States origin were investigated by microsatellite analysis with 40 individuals per cultivar. A total of 312 discernible alleles were amplified from the whole genome with an average of 31.2 alleles per locus. The average values of polymorphic information content and Shannon’s information index were 0.928 and 0.133, respectively, showing high levels of genetic diversity. Two populations were identified by STRUCTURE software with principal coordinate analysis and neighbour-joining clustering. Analysis of molecular variance analysis (AMOVA) revealed that the majority of genetic variation was within cultivars (96.42%) rather than between cultivars (3.58%). In conclusion, analyses of genetic diversity and population structure may be useful for the genetic analysis and utilization of genetic variation in alfalfa breeding.


Alfalfa AMOVA Genetic diversity Population structure SSR.


  1. Bagavathiannan, M.V., Julier, B., Barre, P., Gulden, R.H., and Acker, R.C.V. (2010). Genetic diversity of feral alfalfa (Medicago sativa L.) populations occurring in Manitoba, Canada and comparison with alfalfa cultivars: an analysis using SSR markers and phenotypic traits. Euphytica, 173:419-432.
  2. Ban, T., Han, P., Liu, X., Jin, L. and Wang, X.J. (2009). Sampling numbers in genetic diversity analysis of alfalfa using bulked DNA based on RAPD and SSR markers. Life Science Research, 13:158-162.
  3. Botstein, D., White, R.L., Skolnick, M. and Davis, R.W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 32:314-331.
  4. Cerasela, P., Ciulca, S., Alexandru, L. and Marcela, B.E. (2010). Intra-population genetic diversity in Romanian alfalfa cultivars as revealed by SSR markers. Romanian Biotechnological Letters, 15:107-112.
  5. Evanno, G., Regnaut, S., and Goudet, J. (2005). Detecting the number of clusters of individuals u sing the software STRUCTURE: a simulation study. Molecular Ecology, 14:2611–2620.
  6. Falahati-Anbaran, M., Habashi, A.A., Esfahany, M., Mohammadi, S.A. and Ghareyazie, B. (2007). Population genetic structure based on SSR markers in alfalfa (Medicago sativa L.) from various regions contiguous to the centers of origin of the species. J. Genet., 86: 59-63.
  7. Flajoulot, S., Ronfort, J., Baudouin, P., Barre, P., Huguet, T., Huyghe, C. and Julier, B. (2005). Genetic diversity among alfalfa (Medicago sativa) cultivars coming from a breeding program, using SSR markers. Theoretical and Applied Genetics, 111:1420-1429.
  8. He, C., Xia, Z.L., Campbell, T.A. and Bauchan, G.R. (2009). Development and characterization of SSR markers and their use to assess genetic relationships among alfalfa germplasms. Crop Science, 49:2176-2186.
  9. Herrmann, D., Flajoulot, S. and Julier, B. (2010). Sample size for diversity studies in tetraploid alfalfa (Medicago sativa L.) based on codominantly coded SSR markers. Euphytica, 11: 441-446.
  10. Karayilanli, E. and Ayhan, V. (2016). Investigation of feed value of alfalfa (Medicago sativa L.) harvested at different maturity stages. Legume Research, 39: 237-247
  11. Kim, B. (2015). Analysis of alfalfa production in a water-stressed region: a dynamical modeling approach. Dissertations and Theses, Gradworks, Arizona State University (article in an abstract).
  12. Li, X.H., Han, Y.H., Wei, Y.L., Acharya, A., Farmer, A.D., Ho, J., Monteros, M.J. and Brummer, E.C. (2014). Development of an alfalfa SNP array and its use to evaluate patterns of population structure and linkage disequilibrium. Plos One, 9:e84329.
  13. Liu, Z.P., Chen, T.L., Ma, L.C., Zhao, Z.G., Zhao, P.X., Nan, Z.B. And Wang, Y.R. (2013). Global transcriptome sequencing using the Illumina platform and the development of EST-SSR markers in autotetraploid alfalfa. Plos One, 8:1-13.
  14. Mahuku, G.S. (2012). A simple extraction method suitable for PCR-based analysis of plant, fungal, and bacterial DNA. Plant Molecular Biology Reporter, 22:71-81.
  15. Mengoni, A., Gori, A., and Bazzicalupo, M. (2000). Use of RAPD and microsatellite (SSR) variation to assess genetic relationships among populations of tetraploid alfalfa, Medicago sativa. Plant Breeding, 119:311-317.
  16. Muller, M.H., Prosperi, J.M., Santoni, S. and Ronfort, J. (2001). How mitochondrial DNA diversity can help to understand the dynamics of wild-cultivated complexes. The case study of Medicago sativa in Spain. Mol. Ecol., 10:2753-2763.
  17. Nagl, N., Taski-Ajdukovic, K., Barac, G., Baburski, A., Seccareccia, I., Milic, D. and Katic, S. (2011). Estimation of the genetic diversity in tetraploid alfalfa populations based on RAPD markers for breeding purposes. International Journal of Molecular Sciences, 12: 5449-5460.
  18. Nei, M., Tajima, F., Tateno, Y. (1983). Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. Journal of Molecular Evolution, 19:153-170.
  19. Peakall, R., Smouse, P.E. (2006). GENALEX 6: genetic analysis in Excel, Population genetic software for teaching and research. Molecular Ecology Notes, 6:288-295.
  20. Pritchard, J.K., Stephens, M., Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155:945–959.
  21. Pushpavalli, S., Rajeswari, R.R. (2017). Discerning genetic diversity among super early pigeonpea germplasm using microsatellite markers. Legume Research, 40: 191-195.
  22. Qiang, H.P., Chen, Z.H., Zhang, Z.L., Wang, X.M., Gao, H.W. and Wang, Z. (2015). Molecular diversity and population structure of a worldwide collection of cultivated tetraploid alfalfa (Medicago sativa subsp. sativa L.) germplasm as revealed by microsatellite markers. Plos One, 10:1-12.
  23. Þakiroðlu, M., Doyle, J.J., and Brummer, E.C. (2010). Inferring population structure and genetic diversity of broad range of wild diploid alfalfa (Medicago sativa L.) accessions using SSR markers. Theoretical and Applied Genetics, 121:403-415.
  24. Sanghani, J., Golakiya, B.A., Dhedhi, K.K. and Patel, S.V. (2015). Molecular characterization of mung bean ( Vigna radiata L.) genotypes through RAPD, ISSR and SSR markers. Legume Research, 38:452-456
  25. Tamura, K., Dudley, J., Nei, M. and Kumar, S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24:1596-1599.
  26. Wang, X.J., Yang, X.L., Chen, L., Feng, G.H., Zhang, J.W. and Jin, L. (2011). Genetic diversity among alfalfa (Medicago sativa L.) cultivars in Northwest China. Acta Agriculture Scandinavica Section B-Soil and Plant Science, 61:60-66.
  27. Wang, Z., Yan, H.W., Fu, X.N., Li, X.H. and Gao, H.W. (2013). Development of simple sequence repeat markers and diversity analysis in alfalfa (Medicago sativa L.). Mol. Biol. Rep., 40:3291-3298.
  28. Zhu, C.S., Gore, M.A., Buckler, E. and Yu, J.M. (2008). Status and prospects of association mapping in plants. The Plant Genome, 1:5–20.

Global Footprints