Legume Research
Chief EditorJ. S. Sandhu
Print ISSN 0250-5371
Online ISSN 0976-0571
NAAS Rating 6.80
SJR 0.391
Impact Factor 0.8 (2024)
Chief EditorJ. S. Sandhu
Print ISSN 0250-5371
Online ISSN 0976-0571
NAAS Rating 6.80
SJR 0.391
Impact Factor 0.8 (2024)
Genetic improvement for yield through induced mutagenesis in groundnut (Arachis hypogaea L.)
Submitted11-07-2015|
Accepted10-10-2016|
First Online 04-02-2017|
Groundnut is one of the primary economic crops of the world, which has been exposed extensively to mutagenic treatments for induction of variability. The present research was aimed towards yield improvement in two groundnut cultivars (GPBD-4 and TPG-41) through induced mutagenesis using EMS and gamma rays. One hundred true breeding mutants were isolated at M3 and were evaluated for yield at M4/M5. Thirteen superior mutants showing consistent performance across the generations were further evaluated for economic traits at M6. Greater magnitude of induced variability was found for number of pods per plant (13.65-52.65; 11.83-34.62), pod yield per plant (10.40-49.71; 16.40-41.28) and 100 seed weight (30.18-52.20 g; 37.36-87.65) in GPBD-4 and TPG-41 mutant populations respectively in M4 generation. Mutants G2-214 (34.51 Q/ha) and TE-147 (31.75 Q/ha) recorded 27.53 and 31.75 per cent increase in pod yield over the respective parents GPBD-4 (27.06 Q/ha) and TPG-41 (23.80 Q/ha). Most of the superior mutants were associated with increased 100-seed weight. The high yielding mutants identified in the present study have the dual advantages i.e. desirable agronomic characters and favorable oil chemistry. In this direction mutant G2-214 which recorded highest pod yield (34.51 Q/ha) was also accompanied with increased O/L ratio (3.23) over parent GPBD-4 (1.76)
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.